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HOMOGENEOUS CODIMENSION ONE FOLIATIONS
ON NONCOMPACT SYMMETRIC SPACES

JÜRGEN BERNDT & HIROSHI TAMARU

Abstract
We determine the isometric congruence classes of homogeneous Riemannian
foliations of codimension one on connected irreducible Riemannian sym-
metric spaces of noncompact type. As an application we show that on each
connected irreducible Riemannian symmetric space of noncompact type and
rank greater than two there exist noncongruent homogeneous isoparametric
systems with the same principal curvatures, counted with multiplicities.

1. Introduction

An action of a Lie group on a manifold is of cohomogeneity one if
there exists an orbit of codimension one. Our motivation for this work is
the classical problem: For a connected complete Riemannian manifold
M , determine the space M of all isometric cohomogeneity one actions
on M modulo orbit equivalence. Two cohomogeneity one actions on M
are orbit equivalent if there exists an isometry of M mapping the orbits
of one of these actions onto the orbits of the other action.

For the sphere Sn with its standard metric Hsiang and Lawson [12]
proved that every element in M can be represented by the isotropy
representation of an (n + 1)-dimensional Riemannian symmetric space
of rank two. In successive work by Takagi [25], Uchida [27], D’Atri [8],
Iwata [13, 14] and Kollross [16] the problem was solved for all connected,
simply connected, irreducible Riemannian symmetric spaces of compact
type. For some exceptional symmetric spaces the moduli space M is
an empty set, otherwise M is a finite set and representatives for all
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actions are explicitly known. The main tool for proving these results is
the classification of maximal closed connected subgroups of semisimple
compact Lie groups.

For noncompact manifolds the methods employed by the above au-
thors are not applicable. A major difficulty in the noncompact case
arises from the fact that there can exist large families of nonconjugate
subgroups of the isometry group having the same orbits. In general it is
a difficult problem to decide about orbit equivalence for nonconjugate
subgroups. The aim of this paper is to present a partial solution to this
problem for Riemannian symmetric spaces of noncompact type.

Let M be a connected irreducible Riemannian symmetric spaces of
noncompact type. General theory about cohomogeneity one actions (see
e.g., [20] for the compact case and [3] for the general case) implies that
any such action on M either induces a foliation on M or has exactly one
singular orbit. This induces a disjoint union M = MF ∪MS , where MF

is the set of all homogeneous codimension one foliations on M modulo
isometric congruence and MS is the set of all connected normal ho-
mogeneous submanifolds with codimension ≥ 2 in M modulo isometric
congruence. The main result of this paper is a complete description of
MF .

Denote by r the rank of M and by RP r−1 the (r − 1)-dimensional
real projective space. To each � ∈ RP r−1 we associate a homogeneous
codimension one foliation F� on M all of whose leaves are isometrically
congruent to each other, and to each i ∈ {1, . . . , r} we associate a homo-
geneous codimension one foliation Fi on M that has exactly one minimal
leaf. The symmetry group Aut(DD) of the Dynkin diagram of the re-
stricted root system Σ associated to M acts on a set of simple roots in
Σ, which is a set of r elements and forms a basis of an r-dimensional
Euclidean vector space. This action then induces canonically an ac-
tion on RP r−1, and thus we get an action of the finite symmetry group
Aut(DD) on RP r−1 ∪ {1, . . . , r}.

Theorem. Let M be a connected irreducible Riemannian symmet-
ric space of noncompact type and with rank r. The moduli space MF

of all noncongruent homogeneous codimension one foliations on M is
isomorphic to the orbit space of the action of Aut(DD) on RP r−1 ∪
{1, . . . , r}:

MF
∼= (RP r−1 ∪ {1, . . . , r})/Aut(DD).

A remarkable consequence is that MF depends only on the rank
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and on possible duality or triality principles on the symmetric space.
For instance, for SO(17,C)/SO(17), Sp(8,R)/U(8), Sp(8,C)/Sp(8),
SO(16,H)/U(16), SO(17,H)/U(17), E8

8/SO(16), EC
8 /E8 and for the

hyperbolic Grassmannians G∗
8(R

n+16) (n ≥ 1), G∗
8(C

n+16) (n ≥ 0),
G∗
8(H

n+16) (n ≥ 0) the moduli space MF of all noncongruent homo-
geneous codimension one foliations is isomorphic to RP 7 ∪ {1, . . . , 8}.
Another consequence is that on each of the hyperbolic spaces RHn,
CHn, HHn and OH2 there exist exactly two congruence classes of ho-
mogeneous codimension one foliations. One of them is given by the
horosphere foliation, the other is not so well-known and has been stud-
ied in more detail by the first author in [4].

The construction of the model foliations F� and Fi is in fact ele-
mentary, they arise as orbits of codimension one subgroups of the solv-
able group in an Iwasawa decomposition of the isometry group. These
model foliations have quite interesting geometric features. In the rank
one case F� is a foliation by horospheres. For general rank the leaves
of F� are still all congruent to each other (Proposition 3.1). If r ≥ 2,
there exists an (r − 2)-dimensional family of harmonic foliations (i.e.,
all leaves are minimal) among the model foliations F�, and hence the
corresponding projections F� : M → R onto the space of leaves of F�

are harmonic functions (Corollary 3.2). Each foliation Fi has exactly
one minimal leaf (Corollary 4.5). Moreover, there exists a reflection of
M in a totally geodesic submanifold leaving the unique minimal leaf in-
variant and interchanging the two leaves at any given positive distance
from the minimal leaf (Proposition 4.6). A mean curvature argument
shows that two such foliations are not isometrically congruent when
they come from simple roots of different length. If αi and αj are simple
roots with the same length, then there exists a bijective correspondence
between the leaves of Fi and Fj such that corresponding leaves have the
same principal curvatures, counted with multiplicities (Theorem 4.7).
Moreover, we prove that Fi and Fj are congruent if and only if αi and
αj are related by a Dynkin diagram symmetry, which implies (Corol-
lary 4.9): On every connected irreducible Riemannian symmetric space
of noncompact type and with rank r ≥ 3 there exist noncongruent ho-
mogeneous isoparametric systems for which corresponding leaves have
the same principal curvatures, counted with multiplicities. Among the
inhomogeneous isoparametric systems on spheres constructed by Ferus,
Karcher and Münzner [9] from Clifford modules one can find systems
with such an isospectral feature. The above examples show that this
curious isospectral phenomenon also occurs within the class of homoge-
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neous isoparametric systems.
The parameter space for the model foliations is RP r−1 ∪ {1, . . . , r}.

The two major problems we have to solve is to determine the congruency
classes among these model foliations and to show that any homogeneous
codimension one foliation on M is congruent to one of these model fo-
liations. The above mentioned geometric investigations provide partial
answers to the first problem, but the result about the noncongruent ho-
mogeneous isoparametric systems indicates that it is impossible to solve
it geometrically. We apply a conjugacy result of Alekseevsky [1] about
completely solvable transitive groups of motions to reformulate the first
problem in algebraic terms. One of the crucial steps in solving this al-
gebraic problem is a rigidity result for Lie algebra isomorphisms of the
nilpotent Lie algebra in an Iwasawa decomposition of g (Theorem 3.4).
This result, together with some structure theory for the solvable Lie al-
gebras s�, enables us to decide the congruency problem for the foliations
F� (Theorem 3.5). For the foliations Fi the algebraic problem is quite
easy to handle when the multiplicity of the simple root is greater than
one. In case of multiplicity one we introduce certain diagrams that allow
us to deal with the congruency question in a similar fashion as Dynkin
diagrams are used for semisimple complex Lie algebras (Theorem 4.8).

In order to prove that there are no other homogeneous codimen-
sion one foliations up to orbit equivalence we proceed as follows. First,
using the Levi decomposition of a Lie group and a structure theorem
by Malcev [19] about solvable Lie groups, we can restrict to connected
solvable subgroups S of Go acting on M freely and with cohomogeneity
one. The Lie algebra s of such a Lie group S is contained in a maximal
solvable subalgebra of g that contains, by a result of Mostow [21], a
Cartan subalgebra h of g. We prove that h must be a maximally non-
compact Cartan subalgebra of g, which implies that s ⊂ t + a + n for
some suitable Iwasawa decomposition g = k + a + n of g and a maximal
abelian subalgebra t in the centralizer of a in k (Proposition 5.2). The
orthogonal projection sn of s onto a + n is a Lie subalgebra of a + n

(Proposition 5.4). We classify all possible Lie subalgebras of a + n with
codimension one (Lemma 5.3), which leads, up to orbit equivalence, to
the model foliations constructed above. The final step is then to prove
that S and the connected subgroup of AN with Lie algebra sn induce
isometrically congruent foliations (Theorem 5.5).

The paper is organized as follows. In the next section we present
some basic material about the restricted root systems associated to Rie-
mannian symmetric spaces of noncompact type. In Section 3 we con-
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struct the foliations F� and study the congruency problem for them, and
in Section 4 we deal with the analogue for the foliations Fi. In Section 5
we prove that any homogeneous codimension one foliation on M is iso-
metrically congruent to one of the foliations constructed in Sections 3
and 4.

We mention here that for the standard spaces of nonpositive constant
curvature the relatively simple structure of the Gauss-Codazzi equations
for submanifolds can be used to determine the entire moduli space M.
For the Euclidean space R

n it follows from work of Levi Civita [18]
(for n = 3) and Segre [23] (in general) on isoparametric hypersurfaces
that M is a set of n points, one of which represents the subset MF .
Analogous work of E. Cartan [7] for the real hyperbolic space RHn

shows that for this space the moduli space M consists of n + 1 points,
two of which represent the subset MF . An analogous approach for
more general manifolds leads to hopeless calculations. We finally remark
that the moduli space MS is not known for any connected irreducible
Riemannian symmetric space of noncompact type different from RHn.
Some recent work of the first author and Brück [5] on cohomogeneity
one actions on the hyperbolic spaces CHn, HHn and OH2 indicates
that the structure of this moduli space is far more complicated. In [6]
the authors determined the subset of MS that corresponds to totally
geodesic singular orbits.

We would like to thank Dmitri Alekseevsky and Josef Dorfmeister for
valuable comments and the Engineering and Physical Sciences Research
Council (United Kingdom) for the financial support. We also thank the
referee for pointing out to us a reference that shortened the proof of
Lemma 4.1.

2. Preliminaries

For details about symmetric spaces and structure theory of semisim-
ple Lie algebras we refer to the monographs [10], [11], [17] and [22]. For
root systems Σ and corresponding sets {α1, . . . , αr} of simple roots we
adopt the notation from [17].

Let M be a connected irreducible Riemannian symmetric space of
noncompact type, n = dimM , r the rank of M , and denote by G the
isometry group of M and by Go its identity component. Let o ∈ M and
K resp. Ko the isotropy subgroup of G resp. Go at o. As M is simply
connected, Ko is the identity component of K. We denote by g and k
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the Lie algebra of G and K, respectively, and by B the Killing form of
g. If p is the orthogonal complement of k in g with respect to B then
g = k ⊕ p is a Cartan decomposition of g. We identify p with ToM in
the usual manner. If θ : g → g is the corresponding Cartan involution,
we get a positive definite inner product on g by 〈X,Y 〉 = −B(X, θY )
for all X,Y ∈ g. We normalize the Riemannian metric on M such that
its restriction to ToM × ToM = p × p coincides with 〈·, ·〉.

Let a be a maximal abelian subspace in p and denote by a∗ the dual
vector space of a. For each λ ∈ a∗ we define gλ = {X ∈ g | ad(H)X =
λ(H)X for all H ∈ a}. Since the linear transformations ad(H) : g → g,
H ∈ a, form a commuting family of selfadjoint transformations on g

with respect to 〈·, ·〉, they induce an eigenspace decomposition g = g0⊕⊕
λ∈Σ gλ, the so-called restricted root space decomposition of g with

respect to a. Here, Σ is the set of all nonzero λ ∈ a∗ for which gλ is
nontrivial. Each λ ∈ Σ is called a restricted root and the corresponding
eigenspace gλ is called a restricted root space. The eigenspace g0 with
respect to 0 ∈ a∗ is given by g0 = C(a; k) ⊕ a, where C(a; k) is the
centralizer of a in k. The root system Σ is either reduced and then of
type Ar, Br, Cr, Dr, E6, E7, E8, F4, G2 or nonreduced and then of type
BCr.

For each λ ∈ a∗ let Hλ ∈ a be the dual vector in a with respect
to the Killing form, that is, λ(H) = 〈Hλ, H〉 for all H ∈ a. Then we
get an inner product on a∗, which we also denote by 〈·, ·〉, by means of
〈λ, µ〉 = 〈Hλ, Hµ〉 for all λ, µ ∈ a∗. We choose a set Λ = {α1, . . . , αr}
of simple roots in Σ and denote the resulting set of positive restricted
roots by Σ+. Each root λ ∈ Σ can be written as λ = c1α1 + · · · + crαr

with all integers ck either all ≥ 0 or all ≤ 0. The sum c1 + · · · + cr is
called the level of the root λ. Let m be the level of the maximal root
in Σ+, that is, m = m1 + · · · + mr such that m1α1 + · · · + mrαr is the
maximal root in Σ+.

By Aut(DD) we denote the group of symmetries of the Dynkin di-
agram associated to Λ. Each symmetry P ∈ Aut(DD) can be linearly
extended to a linear isometry of a∗, which we also denote by P . De-
note by Φ the linear isometry from a∗ to a defined by Φ(λ) = Hλ for all
λ ∈ a∗. Then P̃ = Φ◦P ◦Φ−1 is a linear isometry of a with P̃ (Hλ) = Hµ

if and only if P (λ) = µ, λ, µ ∈ a∗. Since P is an orthogonal transfor-
mation, P̃ is just the dual map of P−1 : a∗ → a∗. In this way each
symmetry P ∈ Aut(DD) induces linear isometries of a∗ and a, both of
which we will denote by P , since it will always be clear from the context
which of these two we are using.
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The choice of Λ induces a gradation g =
⊕m

k=−m gk of g, where gk

is the linear subspace of g spanned by all root spaces corresponding
to roots of level k ∈ {−m, . . . ,m}. This gradation is of type α0 (see
[15]), i.e., g1 generates the subalgebra

⊕m
k=1 gk and g−1 generates the

subalgebra
⊕−1

k=−m gk.

For λ, µ ∈ Σ+, λ and µ linearly independent, the µ-string containing
λ is the sequence λ−pµ, . . . , λ, . . . , λ+qµ such that p and q are nonnega-
tive integers, λ−pµ, . . . , λ+qµ ∈ Σ+, and λ−(p+1)µ, λ+(q+1)µ /∈ Σ+.
Then we have 2〈λ, µ〉/〈µ, µ〉 = p − q. The integer p + q ∈ {0, 1, 2, 3} is
called the length of the µ-string containing λ. It is worthwhile to point
out at this point that this formula enables us to calculate the inner
product between roots by using the length of strings involving them.
In particular, the Dynkin diagram of the restricted root system can be
constructed from the set Λ of simple roots just from the string relations
between the simple roots. More precisely, assume that α and β are two
simple roots and consider the α-string containing β and the β-string
containing α, that is, β, . . . , β+qβαα and α, . . . , α+qαββ. If qαβ = qβα,
then connect α and β by qαβ lines. If qαβ �= qβα, then connect α and β
by max{qαβ , qβα} lines and draw an arrow from α to β if qαβ > qβα and
from β to α if qβα > qαβ .

If we define n =
⊕

λ∈Σ+ gλ we get an Iwasawa decomposition g =
k⊕ a⊕ n of g. The subalgebra n of g is an m-step nilpotent subalgebra,
where m is the level of the maximal root in Σ+. The Lie algebra n has a
natural gradation n = n1⊕· · ·⊕nm, where nk = gk. Note that n1 gener-
ates n. Moreover, a+n is a solvable subalgebra of g with [a+n, a+n] = n.
The connected subgroups A,N,AN of G with Lie algebras a, n, a + n,
respectively, are simply connected and AN acts simply transitively on
M . The symmetric space M is isometric to the connected, simply con-
nected, solvable Lie group AN equipped with the left-invariant Rieman-
nian metric that is induced from the inner product 〈·, ·〉. We denote by
∇ the Levi Civita connection of the solvable Lie group AN equipped
with this left-invariant metric. Using the Koszul formula for the Levi
Civita connection, and using the fact that the metric on AN is left-
invariant, we get 2〈∇XY,Z〉 = 〈[X,Y ], Z〉− 〈[Y,Z], X〉+ 〈[Z,X], Y 〉 for
all X,Y, Z ∈ a + n, where we regard elements in the Lie algebra a + n

as left-invariant vector fields on AN .
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3. The foliations F�

Let � be a linear line in a. Then the orthogonal complement s� =
(a+n)�� = (a��)+n of � in a+n is a subalgebra of a+n of codimension
one. Let S� be the connected Lie subgroup of AN with Lie algebra s�.
Then the orbits of the action of S� on M form a homogeneous foliation
F� on M of codimension one.

Let H� ∈ a be a unit vector such that � = RH�. From the above
expression for the Levi Civita connection we get ∇H�

H� = 0. General
theory about Riemannian foliations implies that the integral curves of
H� are geodesics in AN and hence intersect each leaf of F�, and at the
points of intersection it intersects perpendicularly. Let γ : R → AN be
the geodesic in AN with γ(0) = o and γ̇(0) = H�. Then γ(R) ⊂ A, and γ
intersects each leaf of F�. Moreover, as A is abelian, N ⊂ S� and AN =
NA, we get γ(t)S� = S�γ(t) and hence S� ·γ(t) = γ(t)(γ(t)−1S�γ(t))·o =
γ(t)S� · o for all t ∈ R. This shows that each leaf of F� is obtained by
a suitable left translation of S� · o in AN . In particular, all leaves of F�

are congruent to each other under an isometry of M . In order to study
the geometry of the foliation F� it is therefore sufficient to study the
geometry of the leaf S� · o.

The vector H� is a unit normal vector of S� · o at o. We denote by
AH�

the shape operator of S� · o at o with respect to H� and by h the
second fundamental form of S� · o. Since ad(H�) is a selfadjoint endo-
morphism on g with respect to 〈·, ·〉, the above expression for the Levi
Civita connection and the Weingarten formula imply 〈h(X,Y ), H�〉 =
〈AH�

X,Y 〉 = 〈ad(H�)X,Y 〉 for all X,Y ∈ s� = To(S� · o). Therefore
AH�

= ad(H�)|s�, and we have proved:

Proposition 3.1. Using the above notations, we have:

(1) All leaves of F� are isometrically congruent to each other.

(2) The shape operator AH�
of the leaf S� · o of F� through o is given

by AH�
= ad(H�)|s�.

(3) The subspace a � � is a principal curvature space of S� · o with
corresponding principal curvature 0, and for each λ ∈ Σ+ the root
space gλ is a principal curvature space of S� · o with corresponding
principal curvature λ(H�).
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(4) For the (constant) mean curvature µ� of each leaf of F� we have

µ� =
1

n− 1

∑
λ∈Σ+

(dim gλ)λ(H�).

A more general treatment of foliations induced by subalgebras on
Lie groups with left-invariant Riemannian metrics can be found in [26].
It is worthwhile to mention the following observation. If the rank of M
is greater than one, then the unit sphere in a is connected. If H� lies in
the positive Weyl chamber C+ of a, then the mean curvature of S� · o is
positive, whereas it is negative when we choose H� in the negative Weyl
chamber C− of a. For continuity reasons we therefore find on each great
circle in the unit sphere in a through H� ∈ C+ and −H� ∈ C− a point
H�′ ∈ a such that the corresponding orbit S�′ · o is minimal. Since all
leaves of F�′ are isometrically congruent to each other we conclude:

Corollary 3.2. On each connected irreducible Riemannian sym-
metric space of noncompact type and rank r ≥ 2 there exists an (r− 2)-
dimensional family of homogeneous harmonic foliations of codimension
one.

A foliation is called harmonic if all its leaves are minimal submani-
folds. It is known that a foliation on a Riemannian manifold is harmonic
if and only if the canonical projection from the manifold onto the space
of leaves of the foliation is a harmonic map. From the above corollary
we thus get an (r− 2)-dimensional family of harmonic functions on the
symmetric space M with the property that its level sets are homoge-
neous hypersurfaces.

Our next aim is to investigate when two such foliations F� and F�′

are isometrically congruent. We start with some basic properties about
the subalgebras s�.

Lemma 3.3. Let r ≥ 2. The following statements hold:

(1) The Lie algebra s� is completely solvable, that is, there exists a
basis of s� such that ad(s�) consists of upper triangular matrices
with respect to that basis.

(2) The subalgebra

c� =

{
(a � �) ⊕ gλ ⊕ g2λ if � = RHλ for some λ ∈ Σ+, λ/2 /∈ Σ+

a � � otherwise

is a Cartan subalgebra of s�. Note that g2λ is trivial if 2λ /∈ Σ+.
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(3) The set {Y ∈ s� | ad(Y )k = 0 for some k ∈ N} of all nilpotent
elements in s� is equal to n.

Proof. (1): Consider the gradation s� = (a� �)⊕ n1⊕ · · ·⊕nm of s�.
Choose a basis of s� such that the first vectors in that basis are in nm, the
next ones in nm−1, and so on, and the last vectors are in a � �. It then
follows immediately that ad(s�) consists of upper triangular matrices
with respect to that basis.

(2): We first assume that � = RHλ for some positive root λ ∈ Σ+

with λ/2 /∈ Σ+. It is clear that c� = (a � �) ⊕ gλ ⊕ g2λ is a nilpotent
subalgebra of s�. If in particular g2λ is trivial, then c� is an abelian
subalgebra of s�. We have to show that c� equals its own normalizer
in s�. Let X be in the normalizer of c� in s�. We write X = X1 + X2

with X1 ∈ c� and X2 ∈ n � (gλ ⊕ g2λ) = s� � c�. Since [c�, c�] ⊂ c�

and [c�, s� � c�] ⊂ s� � c� we have [c�, X2] = 0. We now decompose X2

into X2 =
∑

µ∈Σ+ Xµ
2 . If X2 �= 0, there exists a root ν ∈ Σ+ such

that Xν
2 �= 0 and the level of ν is less or equal than the level of all

roots µ ∈ Σ+ for which Xµ
2 �= 0. The orthogonal projection of [c�, X2]

onto gν is equal to the orthogonal projection of [a � �,X2] onto gν .
Since ν /∈ {λ, 2λ}, and hence Hν /∈ RHλ, the orthogonal projection of
[a� �,X2] onto gν is nontrivial, which contradicts [c�, X2] = 0. Thus we
must have X2 = 0, and it follows that c� is a Cartan subalgebra of s�.

Next, assume that � �= RHλ for all λ ∈ Σ+. We have to show that
the normalizer of the abelian subalgebra c� = a � � in s� is equal to
c�. Let X be in that normalizer and write X = X1 + X2 with X1 ∈ c�

and X2 ∈ n = s� � c�. We now decompose X2 into X2 =
∑

µ∈Σ+ Xµ
2 .

Then [H,X] = [H,X2] =
∑

µ∈Σ+ µ(H)Xµ
2 ∈ c� = a� � for all H ∈ a� �.

Since by assumption H� is not a multiple of any root vector Hλ, we have
µ(a� �) �= 0 for all µ ∈ Σ+, which implies Xµ

2 = 0 for all µ ∈ Σ+. Thus
X2 = 0, and it follows that c� = a � � is a Cartan subalgebra of s�.

(3): From the graded Lie algebra structure of n it is clear that every
element in n is nilpotent. Let 0 �= H ∈ a � � and X ∈ n. Then
there exists a simple root α ∈ Λ such that α(H) �= 0. Let Y ∈ gα

be a nonzero vector. We will now show by induction that (ad(H +
X)kY )gα = α(H)kY �= 0 for all positive integers k, where (·)gα denotes
the orthogonal projection onto gα.

Since X ∈ n and Y ∈ gα, and as α is a simple root, we have [X,Y ] ∈
n2 ⊕ · · · ⊕ nm, and hence the gα-component of ad(X)Y vanishes. It
follows that (ad(H + X)Y )gα = (ad(H)Y )gα = α(H)Y �= 0, which
proves the assertion for k = 1.



homogeneous codimension one foliations 11

Now assume that the assertion holds for the positive integer k and
consider the expression (ad(H + X)k+1Y )gα = (ad(H + X)ad(H +
X)kY )gα . Since ad(H + X)kY ∈ n, only the gα-component of it con-
tributes to a gα-component in (ad(H + X)ad(H + X)kY )gα , that is,
(ad(H +X)k+1Y )gα = (ad(H +X)((ad(H +X)k)Y )gα)gα . The assump-
tion and the statement for k = 1 then imply (ad(H + X)k+1Y )gα =
α(H)k(ad(H +X)Y )gα = α(H)k+1Y �= 0. This concludes the induction
and shows that H + X is not a nilpotent element in s�. q.e.d.

The next result provides a necessary and sufficient condition in order
that a Lie algebra isomorphism of n can map a root space gλ onto
another root space gµ. This result is of interest in its own right and will
be applied later to settle the congruency problem.

Theorem 3.4. Let λ, µ ∈ Σ+. Then there exists a Lie algebra iso-
morphism F of n with F (gλ) = gµ if and only if there exists a symmetry
P ∈ Aut(DD) with P (λ) = µ.

Proof. The if-part follows from standard theory of real semisimple
Lie algebras. For the converse, let F be a Lie algebra isomorphism of n

with F (gλ) = gµ. First of all we will show that without loss of generality
we can assume that F preserves the gradation n = n1 ⊕ · · · ⊕ nm. For
X ∈ n we denote by Xi the orthogonal projection of X onto ni. We
define a linear map F̃ : n → n , X �→ ∑m

i=1(F (Xi))i. Consider the lower
central series of n, that is, L0(n) := n, L1(n) := [n, n], and Lk(n) :=
[Lk−1(n), n] = nk+1⊕· · ·⊕nm (2 ≤ k ≤ m−1). Since F is a Lie algebra
isomorphism of n it induces a vector space isomorphism of Lk(n) for all
k ∈ {0 . . . ,m − 1}. From this fact it follows easily that F̃ is a vector
space isomorphism of n. For Xi ∈ ni and Yj ∈ nj , 1 ≤ i, j ≤ m, we have

F̃ [Xi, Yj ] = (F [Xi, Yj ])i+j = [FXi, FYj ]i+j

= [(FXi)i + · · · + (FXi)m, (FYj)j + · · · + (FYj)m]i+j

= [(FXi)i, (FYj)j ]i+j = [(FXi)i, (FYj)j ] = [F̃Xi, F̃Xj ] ,

which implies that F̃ is a Lie algebra isomorphism of n with F̃ (gλ) =
gµ. Thus we can assume from now on that F preserves the gradation
n = n1 ⊕ · · · ⊕ nm, that is, F (ni) = ni for all i ∈ {1, . . . ,m}.

Since F preserves the gradation of n it is clear that the level mλ

of λ must be equal to the level mµ of µ. For a linear subspace V of
n we denote by C(V ; nk) the centralizer of V in nk. Obviously, when
F preserves V then F preserves also C(V ; nk) and the subalgebra of
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n generated by C(V ; nk). Of particular importance for us will be the
subalgebra n(α̃) generated by C(nm−1; n1). Note that n(α̃) is the subal-
gebra of n generated by the root spaces of those simple roots in Λ that
are not connected with the maximal root α̃ in the extended Dynkin
diagram of Σ. Since F preserves n(α̃) we have either gλ, gµ ⊂ n(α̃) or
gλ, gµ ⊂ n � n(α̃). We now prove the theorem by considering the root
systems case-by-case.

Σ = Ar, r ≥ 1: For r ∈ {1, 2} this is trivial. Assume that r ≥ 3. The
subalgebra n(α̃) is of type Ar−2 and generated by gα2⊕· · ·⊕gαr−1 . Here,
and in the following, when we say this subalgebra is of type Ar−2 we
refer to the nilpotent part in the induced Iwasawa decomposition of the
semisimple subalgebra of g of type Ar−2 determined by the simple roots
α2, . . . , αr−2. If gλ, gµ ⊂ n(α̃), we can apply an inductive argument,
because every symmetry of the Dynkin diagram of the Ar−2-type subal-
gebra can be extended to a symmetry of the Dynkin diagram of Ar. If
gλ, gµ ⊂ n�n(α̃), we have {λ, µ} ∈ {α1+ · · ·+αmλ

, αr−mλ+1+ · · ·+αr},
which implies that there exists a symmetry P ∈ Aut(DD) with P (λ) =
µ.

Σ = Br, r ≥ 2: For r = 2 this is trivial. In the case r = 3 the
subalgebra n(α̃) is of type A1⊕A1 and equal to gα1 ⊕ gα3 . This implies
that F cannot map gα2 onto gα1 or gα3 , and vice versa. The subspace
[gα1 , [gα1 , gα2 ]] is trivial, whereas the subspace [gα3 , [gα3 , gα2 ]] ⊂ gα2+2α3

is nontrivial, and since the projection of F (gα2) onto gα2 must be equal
to gα2 , this implies that F cannot map gα1 onto gα3 , and vice versa.
Since C(gα1+α2 ; n1) = gα1 ⊕ gα2 and C(gα2+α3 ; n1) = gα2 , the isomor-
phism F cannot map one of the two root spaces on level 2 onto the
other one. Finally, C(gα1+α2+α3 ; n1) = gα1 ⊕gα2 generates a subalgebra
of type A2, whereas C(gα2+2α3 ; n1) = gα2 ⊕ gα3 generates a subalgebra
of type B2, which implies that F cannot map one of the two root spaces
on level 3 onto the other one. This proves the assertion for B3. Now
let r ≥ 4. The subalgebra n(α̃) is the subalgebra of type A1 ⊕ Br−2

generated by gα1 ⊕ gα3 ⊕ · · · ⊕ gαr . This implies F (gα1) = gα1 . If
gλ, gµ ⊂ n(α̃), we can apply an inductive argument to see that λ = µ.
If gλ, gµ �⊂ n(α̃), then both λ and µ have an α2-component. On each
level mλ ∈ {2, . . . , 2r − 2} there are exactly two roots with an α2-
component, namely {α1 + · · · + αmλ

, α2 + · · · + αmλ+1} if mλ < r,
{α1+ · · ·+αr, α2+ · · ·+αr−1+2αr} if mλ = r, and {α1+ · · ·+α2r−mλ

+
2α2r−mλ+1 + · · · + 2αr, α2 + · · · + α2r−mλ−1 + 2α2r−mλ

+ · · · + 2αr} if
mλ > r. In all cases the centralizer of the first root in n1 contains the
invariant root space gα1 , whereas the centralizer of the second root in
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n1 does not contain this invariant subspace. This implies the assertion,
since on the levels 1 and 2r − 1 = m there is only one root with an
α2-component.

Σ = Cr, r ≥ 2: For r = 2 this is the same as for B2. For r ≥ 3 we see
that n(α̃) is a subalgebra of type Cr−1 generated by gα2 ⊕ · · · ⊕ gαr . If
gλ, gµ ⊂ n(α̃), we can apply an inductive argument to show that λ = µ.
If gλ, gµ ⊂ n � n(α̃), then both λ and µ must have an α1-component.
Since on each level there exists only one root with an α1-component this
implies λ = µ.

Σ = Dr, r ≥ 3: For r = 3 this is the same as for A3. If r = 4, then
n(α̃) is the subalgebra of type A1 ⊕ A1 ⊕ A1 given by the root spaces
gα1 ⊕ gα3 ⊕ gα4 . Thus the root space gα2 cannot be mapped onto any
other simple root space under F , and vice versa. On the other hand, the
symmetry group of the Dynkin diagram of D4 is the symmetric group
S3 of three letters, and any two simple roots different from α2 can be
mapped to each other by such a symmetry. There are three roots on
level 2 and three roots on level 3, and on each level any two of them
can be mapped to each other by a symmetry in S3. On higher levels
there is only one root. Now assume that r ≥ 5. In this case n(α̃) is a
subalgebra of type A1 ⊕ Dr−2 generated by gα1 ⊕ gα3 ⊕ · · · ⊕ gαr . In
particular, this implies F (gα1) = gα1 . If gλ, gµ ⊂ n(α̃), we again want
to apply an inductive argument. It is clear that every symmetry of the
Dynkin diagram of Dr−2 can be extended to a symmetry of the Dynkin
diagram of Dr if r �= 6. We thus have to investigate the special case
r = 6. We have C(n7; n1) = gα2 ⊕ gα4 ⊕ gα5 ⊕ gα6 , which generates
a subalgebra of type A1 ⊕ A3 and implies that F (gα2) = gα2 . Next,
we have C(n6; n1) = gα2 ⊕ gα5 ⊕ gα6 , which is a subalgebra of type
A1 ⊕ A1 ⊕ A1. Since F preserves gα2 , this implies F (gα5 ⊕ gα6) =
gα5 ⊕ gα6 , which shows that r = 6 does not cause any problems for
the inductive argument. If gλ, gµ �⊂ n(α̃), then both λ and µ have
an α2-component. On each level mλ ∈ {2, . . . , 2r− 5} there are exactly
two roots with an α2-component modulo the nontrivial Dynkin diagram
symmetry, namely {α1 + · · · + αmλ

, α2 + · · · + αmλ+1} if mλ < r − 1,
{α1 + · · ·+αr, α2 + · · ·+ 2αr−2 +αr−1 +αr} if mλ = r, and {α1 + · · ·+
α2r−mλ−2 + 2α2r−mλ−1 + · · ·+ 2αr−2 +αr−1 +αr, α2 + · · ·+α2r−mλ−3 +
2α2r−mλ−2 + · · · + 2αr−2 + αr−1 + αr} if mλ > r. In all cases the
centralizer of the second root in n1 contains the invariant root space
gα1 , whereas the centralizer of the first root in n1 does not contain this
invariant subspace. This implies the assertion, since on the levels 1,
2r − 4 and 2r − 3 = m there is only one root with an α2-component.
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Σ = BCr, r ≥ 2: For r = 2 we have n(α̃) = gα2 ⊕g2α2 , which readily
implies that F cannot map any root space onto another root space. For
r ≥ 3, n(α̃) is a subalgebra of type BCr−1 generated by gα2⊕· · ·⊕gαr . If
gλ, gµ ⊂ n(α̃), we can apply an inductive argument to show that λ = µ.
If gλ, gµ ⊂ n � n(α̃), then both λ and µ must have an α1-component.
Since on each level mλ ∈ {1, . . . , 2r} there exists exactly one root with
an α1-component this implies λ = µ.

Σ = E6: The root β10 = α1 + α2 + 2α3 + 3α4 + 2α5 + α6 is the only
root on level 10 and C(gβ10 ; n1) = gα1 ⊕gα3 ⊕· · ·⊕gα6 , which generates
a subalgebra of type A5. This shows that F leaves the subalgebra gen-
erated by gα3 ⊕ gα4 ⊕ gα5 invariant, which is a subalgebra of type A3.
Using n(α̃) for this A3-type subalgebra implies F (gα4) = gα4 . The root
β9 = α1 + α2 + 2α3 + 2α4 + 2α5 + α6 is the only root on level 9 and
C(gβ9 ; n1) = gα1 ⊕ gα2 ⊕ gα3 ⊕ gα5 ⊕ gα6 , which generates a subalgebra
of type A2 ⊕ A1 ⊕ A2. The A1-part gives F (gα2) = gα2 . Taking the
intersection of the (A2 ⊕ A1 ⊕ A2)-type subalgebra with the A3-type
subalgebra obtained in level 10 we see that F (gα3 ⊕ gα5) = gα3 ⊕ gα5 .
The subalgebra n(α̃) is of type A5 and generated by gα1⊕gα3⊕· · ·⊕gα6 .
If gλ, gµ ⊂ n(α̃), there exists a transformation in the symmetry group of
the Dynkin diagram of A5 mapping λ to µ. The structure of the Dynkin
diagram of E6 shows that this symmetry extends to a symmetry of the
Dynkin diagram of E6. Now assume that gλ, gµ ⊂ n � n(α̃). From the
structure of the root system E6, and taking into account the symmetry
group of the Dynkin diagram of E6, it remains to show that the root
spaces corresponding to the following roots cannot be mapped to each
other under F :

on level 4: β14 = α1 + α2 + α3 + α4, β24 = α2 + α3 + α4 + α5;

on level 5: β15 = α1 + α2 + α3 + α4 + α5, β25 = α2 + α3 + 2α4 + α5;

on level 6: β16 = α1+α2+α3+α4+α5+α6, β
2
6 = α1+α2+α3+2α4+α5;

on level 7: β17 = α1+α2+α3+2α4+α5+α6, β
2
7 = α1+α2+2α3+2α4+α5.

These are exactly all pairs of roots in Σ+ modulo Aut(DD)-congruence
with an α1-component. The assertion then follows by considering the
following centralizers:

on level 4: gβ1
4
⊂ C(gα4 ; n4), gβ2

4
�⊂ C(gα4 ; n4);

on level 5: gβ1
5
⊂ C(gα2 ; n5), gβ2

5
�⊂ C(gα2 ; n5);

on level 6: gβ1
6
�⊂ C(gα4 ; n6), gβ2

6
⊂ C(gα4 ; n6);

on level 7: gβ1
7
�⊂ C(gα3 ⊕ gα5 ; n7), gβ2

7
⊂ C(gα3 ⊕ gα5 ; n7),
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and the fact that all these centralizers are invariant under F .
Σ = E7: The root β16 = α1+2α2+3α3+4α4+3α5+2α6+α7 is the

only root on level 16 and C(gβ16 ; n1) = gα2 ⊕ · · · ⊕ gα7 , which generates
a subalgebra of type D6. Applying the n(α̃)-method to this subalgebra
shows that F leaves the subalgebra generated by gα2 ⊕ · · · ⊕ gα5 ⊕ gα7

invariant, which is a subalgebra of type D4⊕A1. This implies F (gα7) =
gα7 . The root β15 = α1 + 2α2 + 2α3 + 4α4 + 3α5 + 2α6 + α7 is the
only root on level 15 and C(gβ15 ; n1) = gα1 ⊕ gα2 ⊕ gα4 ⊕ · · · ⊕ gα7 ,
which generates a subalgebra of type A1 ⊕ A5. This implies F (gα1) =
gα1 . Moreover, applying the n(α̃)-method to the subalgebra of type
A5 implies that F leaves the subalgebra generated by gα4 ⊕ gα5 ⊕ gα6

invariant, which is a subalgebra of type A3. Applying once again the
n(α̃)-method to this A3-type subalgebra shows that F (gα5) = gα5 . The
root β14 = α1+2α2+2α3+3α4+3α5+2α6+α7 is the only root on level
14 and C(gβ14 ; n1) = gα1 ⊕ gα2 ⊕ gα3 ⊕ gα5 ⊕ gα6 ⊕ gα7 , which generates
a subalgebra of type A2 ⊕A1 ⊕A3. The A1-part implies F (gα2) = gα2 ,
and applying the n(α̃)-method to the A3-part implies F (gα6) = gα6 .
Taking the intersection of the D6-type subalgebra obtained in level 16
and the A2-type subalgebra obtained in level 14 implies F (gα3) = gα3 .
On level 13 there are two roots, namely β113 = α1 + 2α2 + 2α3 + 3α4 +
2α5 + 2α6 + α7 and β213 = α1 + α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7,
and C(gβ1

13
⊕ gβ2

13
; n1) = gα1 ⊕ gα3 ⊕ gα4 ⊕ gα6 ⊕ gα7 , which generates

a subalgebra of type A3 ⊕ A2. Taking the intersection of the A3-type
subalgebra with the A5-type subalgebra obtained in level 15 implies
F (gα4) = gα4 . Hence all simple roots spaces are preserved by F , which
implies F (gλ) = gλ for all λ ∈ Σ+.

Σ = E8: The root β28 = 2α1+3α2+4α3+6α4+5α5+4α6+3α7+α8

is the only root on level 28 and C(gβ28 ; n1) = gα1 ⊕ · · · ⊕ gα7 , which
generates a subalgebra of type E7. Since F preserves this subalgebra,
the discussion in the previous case shows that F (gαi) = gαi for all
i ∈ {1, . . . , 7}. The root β27 = 2α1+3α2+4α3+6α4+5α5+4α6+2α7+α8

is the only root on level 27 and C(gβ27 ; n1) = gα1 ⊕· · ·⊕gα6 ⊕gα8 , which
generates a subalgebra of type E6 ⊕ A1. This shows F (gα8) = gα8 .
Hence F preserves all simple root spaces, which implies F (gλ) = gλ for
all λ ∈ Σ+.

Σ = F4: The root β10 = α1 + 3α2 + 4α3 + 2α4 is the only root on
level 10 and C(gβ10 ; n1) = gα2 ⊕gα3 ⊕gα4 , which generates a subalgebra
of type C3. This subalgebra is invariant under F , and applying the
n(α̃)-method to it shows that the subalgebra generated by gα2 ⊕ gα3

is invariant under F , which is a subalgebra of type B2. Applying the
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n(α̃)-method to this B2-type subalgebra implies that F (gα2) = gα2 .
The root β9 = α1 + 2α2 + 4α3 + 2α4 is the only root on level 9 and
C(gβ9 ; n1) = gα1 ⊕ gα3 ⊕ gα4 , which generates a subalgebra of type
A1 ⊕ A2. This implies F (gα1) = gα1 and F (gα3 ⊕ gα4) = gα3 ⊕ gα4 .
Since F leaves also gα2 ⊕ gα3 invariant, the latter statement implies
F (gα3) = gα3 . Finally, the root β8 = α1 + 2α2 + 3α3 + 2α4 is the only
root on level 8 and C(gβ8 ; n1) = gα1 ⊕ gα2 ⊕ gα4 , which generates a
subalgebra of type A2 ⊕ A1. This implies F (gα4) = gα4 and thus all
simple root spaces are preserved by F , which implies F (gλ) = gλ for all
λ ∈ Σ+.

Σ = G2: The root β4 = 3α1 + α2 is the only root on level 4 and
C(gβ4 ; n1) = gα1 , which implies F (gα1) = gα1 . The root β3 = 2α1 + α2

is the only root on level 3 and C(gβ3 ; n1) = gα2 , which implies F (gα2) =
gα2 . Altogether this implies F (gλ) = gλ for all λ ∈ Σ+. q.e.d.

We now start to investigate the congruency problem for the foliations
F�. We assume r ≥ 2 from now on. According to Proposition 3.1 all
leaves of F� and all leaves of F�′ are isometrically congruent to each other.
Therefore the two leaves S� · o and S�′ · o are isometrically congruent to
each other. Since S� is connected, it follows from Lemma 3.3 that S� is
completely solvable, that is, there exists a basis of s� such that Ad(S�)
consists of upper triangular matrices with respect to that basis. Since
any two connected completely solvable transitive groups of isometries
on a Riemannian manifold are conjugate in the isometry group of that
manifold (see [1]), we conclude that the Lie algebras s� and s�′ are
isomorphic.

Let F : s� → s�′ be a Lie algebra isomorphism. Then F maps the
Cartan subalgebra c� of s� onto a Cartan subalgebra of s�′ . Since any
two Cartan subalgebras of a solvable Lie algebra are conjugate to each
other under an inner automorphism we can assume that F (c�) = c�′ . In
view of Lemma 3.3 it is natural to distinguish the following cases:

Case 1. � = RHλ for some root λ ∈ Σ+ with 2λ ∈ Σ+.

Case 2. � = RHλ for some root λ ∈ Σ+ with 2λ, 12λ /∈ Σ+.

Case 3. � �= RHλ for all λ ∈ Σ+.

In the first case c� is a nilpotent and nonabelian Cartan subalgebra,
in the second case c� is an abelian Cartan subalgebra containing non-
trivial nilpotent elements, and in the third case c� is an abelian Cartan
subalgebra without nontrivial nilpotent elements.
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We start with Case 1. Assume that � = RHλ for some root λ ∈ Σ+

with 2λ ∈ Σ+. From Lemma 3.3 we see that the Cartan subalgebra
c� = (a � �) ⊕ gλ ⊕ g2λ of s� is nilpotent and nonabelian. Thus the
Cartan subalgebra c�′ of s�′ must also be nilpotent and nonabelian, and
we get from Lemma 3.3 that there exists a root λ′ ∈ Σ+ with 2λ′ ∈ Σ+

such that �′ = RHλ′ . The derived subalgebra of c� is g2λ and must be
mapped onto the derived subalgebra g2λ′ of c�′ by F . We can now apply
Theorem 3.4 and get a symmetry P ∈ Aut(DD) with P (2λ) = 2λ′ and
hence also P (λ) = λ′. By construction, this implies then P (�) = �′.

Next, we consider Case 2. Let � = RHλ for some root λ ∈ Σ+

with 2λ, 12λ /∈ Σ+. Then the Cartan subalgebra c� of s� is abelian and
dim c� = r−1 + dim gλ. Since F maps c� onto the Cartan subalgebra c�′

of s�′ , the latter one must also be abelian and of dimension greater than
r − 1. According to Lemma 3.3 this can happen only when �′ = RHλ′

for some root λ′ ∈ Σ+ with 2λ′, 12λ
′ /∈ Σ+. The isomorphism F maps

the Cartan subalgebra c� = (a � �) ⊕ gλ of s� to the Cartan subalgebra
c�′ = (a��′)⊕gλ′ of s�′ . Moreover, F maps the set of nilpotent elements
in s� onto the set of nilpotent elements in s�′ , which for both subalgebras
is equal to n. It follows that gλ = c� ∩ n is mapped onto gλ′ = c�′ ∩ n by
F . From Theorem 3.4 we then conclude that there exists a symmetry
P ∈ Aut(DD) with P (λ) = λ′ and hence also P (�) = �′.

We finally consider Case 3. Then c� = a � � is a Cartan subalgebra
of s�, which is mapped by the isomorphism F to the Cartan subalgebra
c�′ = a � �′ of s�′ . Using Lemma 3.3 we therefore must have �′ �= RHλ

for all λ ∈ Σ+. If λ ∈ Σ+ then λ|c� is a root of s� with respect to the
Cartan subalgebra c�. We denote by Σ+

� the set of these roots and by g�
λ

the corresponding root spaces. The set Λ� = {α|c� | α ∈ Λ} generates
Σ+

� in a similar way as Λ generates Σ+. For each λ ∈ Σ+
� we define

a linear map F ∗λ : c�′ → R by F ∗λ(H) = λ(F−1H) for all H ∈ c�′ .
Since [H,FX] = F [F−1H,X] = λ(F−1H)FX for all X ∈ g�

λ, we see
that F ∗λ ∈ Σ+

�′ and F (g�
λ) = g�′

F ∗λ for all λ ∈ Σ+
� . Thus F ∗ induces an

isomorphism from the set Σ+
� onto the set Σ+

�′ and maps root spaces of
roots in Σ+

� onto root spaces of roots in Σ+
�′ . Since F ∗(λ+µ) = F ∗λ+F ∗µ

for all λ, µ ∈ Σ+
� , F ∗ maps root strings to root strings, and hence induces

an isomorphism between the sets Λ� and Λ�′ .

It may happen that there exist two roots λ, µ ∈ Σ+ such that λ|c� =
µ|c�. In this case gλ ⊕ gµ is the root space g�

λ = g�
µ corresponding to

λ|c� = µ|c� ∈ Σ+
� , and we say that the two roots λ and µ collapse

in s�. Note that if λ and µ collapse in s�, and if κ ∈ Σ+ such that
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κ + kλ, κ + kµ ∈ Σ+ for some k > 0, then also κ + kλ and κ + kµ
collapse in s�. If λ ∈ Σ+ does not collapse in s� with any other root in
Σ+ then g�

λ = gλ.
If no two simple roots in Λ collapse in s�, then Λ� consists of r

elements. Since F ∗ maps the set Λ� isomorphically onto the set Λ�′ ,
the latter set consists also of r elements and it follows that no two
simple roots in Λ collapse in s�′ . Since F ∗ maps root strings to root
strings we conclude that F ∗ induces a Dynkin diagram symmetry P .
Let k be an isometry in the normalizer of a + n in K such that the
action of Ad(k)∗ on Λ coincides with the action of P . For all α ∈ Λ,
Xα ∈ gα and H ′ ∈ c�′ we have [H ′, FXα] = F [F−1H ′, Xα], as F is a
Lie algebra isomorphism. The left-hand side of the previous equation is
equal to (F ∗α)(H ′)FXα = (Ad(k)∗α)(H ′)FXα = α(Ad(k)−1H ′)FXα,
and the right-hand side equals α(F−1H ′)FXα. Comparing the two sides
shows that α(Ad(k)−1H ′) = α(F−1H ′) for all α ∈ Λ and H ′ ∈ c�′ . This
implies Ad(k)−1|c�′ = F−1|c�′ and hence Ad(k)|c� = F |c�. Then we have
Ad(k)(s�) = s�′ and hence, since Ad(k) preserves the inner product on a,
also Ad(k)(�) = �′. Thus P ∈ Aut(DD) is a symmetry with P (�) = �′.

Now assume that two simple roots α, β ∈ Λ collapse in s�. If r = 2,
we must have � = R(Hα1 −Hα2) = �′. We therefore can assume r ≥ 3
from now on. Then Λ� consists of r − 1 elements, and since Λ�′ is
isomorphic to Λ�, we see that there exist two simple roots α′, β′ ∈ Λ
that collapse in s�′ . We claim that F (gα ⊕gβ) = gα′ ⊕gβ′ . Assume that
this is not true. Then there exists a simple root γ ∈ Λ \ {α′, β′} such
that F (gα ⊕ gβ) = gγ . By inspection of the possible root systems and
the multiplicities of the roots (see [2] for a list of the multiplicities), we
see that this is possible only in the following cases:

(1) Σ = Br and M = SOo(r + 2, r)/SO(r + 2) × SO(r);

(2) Σ = BCr and M = SU(r + 2, r)/S(U(r + 2) × U(r));

(3) Σ = BCr and M = Sp(r + 2, r)/Sp(r + 2) × Sp(r);

(4) Σ = F4 and M = E2
6/SU(6) × SU(2).

Since α and β are on the same level it follows that whenever two roots
in Σ+ collapse in s� they are on the same level in Σ+. This implies that
F preserves the gradation n = n1 ⊕ · · · ⊕ nm of n. In Cases (1), (2) and
(3) we must have γ = αr. In Case (1) the centralizer of gαr in n1 is
n1 � gαr−1 , which is a linear subspace of codimension one in n1. On the
other hand, the orthogonal complement of the centralizer of gα ⊕ gβ in
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n1 contains at least two simple root spaces and hence has a codimension
greater than one in n1. This excludes Case (1). In Cases (2) and (3)
we consider derived subalgebras. Since F maps gα ⊕ gβ isomorphically
onto gαr , it also maps their derived subalgebras isomorphically onto each
other. But [gαr , gαr ] = g2αr has odd dimension, whereas [gα ⊕ gβ, gα ⊕
gβ] = [gα, gβ] = gα+β has even dimension, which gives a contradiction.
Finally, in Case (4), we must have γ ∈ {α3, α4}. We consider again
centralizers to derive a contradiction. The centralizer of gα ⊕ gβ in n1
is gα4 and has dimension 2. On the other hand, the centralizer of gα3

in n1 is gα1 ⊕ gα3 , which is 3-dimensional, and the centralizer of gα4

in n1 is gα1 ⊕ gα2 ⊕ gα4 , which is 4-dimensional. This shows that F
cannot map gα ⊕ gβ isomorphically onto gγ . We thus have proved that
F (gα ⊕ gβ) = gα′ ⊕ gβ′ .

Since r ≥ 3, the sets {γ ∈ Σ+ | 〈γ, α〉 = 0} and {γ ∈ Σ+ | 〈γ, β〉 = 0}
are nonempty and not identical. Thus there exists a root γ ∈ Σ+ with
〈γ, α〉 = 0 and 〈γ, β〉 �= 0. This means that γ±α /∈ Σ+ and γ +β ∈ Σ+.
Assume that γ collapses in s� with some root µ ∈ Σ+. Then there
exist a root δ ∈ Σ+ and a positive integer k such that γ = δ + kα and
µ = δ + kβ. Then γ − kα = δ ∈ Σ+, which implies γ − α ∈ Σ+ by
general properties of root strings. This contradicts γ −α /∈ Σ+, and we
conclude that γ does not collapse in s� with any root in Σ+. We can
characterize gα by gα = {X ∈ gα ⊕ gβ | [X, gγ ] = 0}. Then F (gα) =
{Y ∈ gα′ ⊕ gβ′ | Y = FX and [X, gγ ] = 0 for some X ∈ gα ⊕ gβ}.
Since γ does not collapse in s�, there exists a root γ′ ∈ Σ+ such that
F ∗γ|c�′ = γ′|c�′ , and we get F (gγ) = gγ′ and hence F (gα) = {Y ∈
gα′ ⊕ gβ′ | [Y, gγ′ ] = 0}. If α′ + γ′, β′ + γ′ ∈ Σ+, then F (gα) = 0, which
contradicts the fact that F is an isomorphism. If α′ + γ′, β′ + γ′ /∈ Σ+

then F (gα) = gα′ ⊕ gβ′ , which is again a contradiction. We therefore
must have either α′ +γ′ ∈ Σ+, β′ +γ′ /∈ Σ+, which implies F (gα) = gβ′ ,
or α′ + γ′ /∈ Σ+, β′ + γ′ ∈ Σ+, which implies F (gα) = gα′ . We therefore
can assume, without loss of generality, that F (gα) = gα′ and F (gβ) =
gβ′ . From Theorem 3.4 we conclude that there exist P,Q ∈ Aut(DD)
with P (α) = α′ and Q(β) = β′.

We claim that we can choose P = Q. If α or β is in the set
Fix(Λ,Aut(DD)) of fixed points of the action of Aut(DD) on Λ, then
this is clear. Now assume that α, β /∈ Fix(Λ,Aut(DD)). Then we have
necessarily Σ ∈ {Ar, Dr, E6}. If Σ = D4, we have Aut(DD) = S3,
and for any two pairs of distinct roots not in Fix(Λ,Aut(DD)) there
exists a symmetry in S3 mapping the first pair to the second one. This
shows that we can choose P = Q if Σ = D4. If Σ = Dr, r �= 4, the set
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Λ \ Fix(Λ,Aut(DD)) consists of exactly two points, which readily im-
plies that we can choose P = Q. If Σ = E6, the structure of the Dynkin
diagram of E6 shows that Λ \ Fix(Λ,Aut(DD)) consists of two pairs of
simple roots, where in each pair the roots form nontrivial strings with
each other, but no nontrivial strings with the roots of the other pair.
If {α, β} forms such a pair, the other pair consists of simple roots of Λ
that do not collapse in s� and hence correspond to roots in Λ�. Since F
preserves strings of roots in Λ�, we conclude that {α′, β′} must also be
one of the two pairs. So the structure of the Dynkin diagram of E6 tells
us that we must have P = Q. If α and β are in different pairs, a similar
argument gives P = Q as well. Finally, consider the case Σ = Ar, in
which case we have Aut(DD) = Z2. If P �= Q, then either P or Q must
be the identity, say Q. Then β = β′, and just contemplating about the
structure of the Dynkin diagram of Ar and taking into account that
string relations between roots in Λ \ {α, β} are preserved by F , shows
that also P must be the identity, which is a contradiction. Thus ei-
ther both P and Q are the identity, or both of them are different from
the identity in Aut(DD). Altogether this implies that we can choose
P = Q. Since � = R(Hα − Hβ) and �′ = R(Hα′ − Hβ′), we can now
conclude that there exists a symmetry P ∈ Aut(DD) with P (�) = �′.

Conversely, let �, �′ be two different lines and assume that there
exists a symmetry P ∈ Aut(DD) with P (�) = �′. There exists an outer
automorphism F of g such that the induced action of F on Σ+ is equal to
the action of P on Σ+. In fact, F = Ad(k) for some k in the normalizer
of a + n in K. By construction we have F (s�) = s�′ , which implies that
k is an isometry of M mapping the leaves of the foliation F� onto the
leaves of the foliation F�′ . This finishes the investigations about the
congruency of the foliations F�, and we summarize it in:

Theorem 3.5. Two foliations F� and F�′ are isometrically congru-
ent to each other if and only if there exists a symmetry P ∈ Aut(DD)
with P (�) = �′.

4. The foliations Fi

The following lemma is crucial for showing that the foliations Fi are
well-defined:

Lemma 4.1. Let α ∈ Λ be a simple root. For each unit vector
ξ ∈ gα the subspace sξ = a+(n�Rξ) is a subalgebra of a+n. Moreover,
if ξ, η are two unit vectors in gα, then there exists an isometry k in the
centralizer of a in Ko such that Ad(k)(sξ) = sη.
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Proof. The fact that sξ is a subalgebra of a + n follows immediately
from elementary properties of root systems. For the congruency problem
there is nothing to prove if dim gα = 1, and for dim gα > 1 this follows
from Exercise 2 on p. 211 in [11] (see p. 566 for the solution). q.e.d.

The previous lemma implies that for each simple root αi ∈ Λ we
obtain a congruence class of homogeneous foliations of codimension one
on M . More precisely, let αi ∈ Λ, ξ ∈ gαi be a unit vector, and Sξ be the
connected Lie subgroup of AN with Lie algebra sξ. Then the orbits of
the action of Sξ on M form a homogeneous foliation Fξ of codimension
one on M . If η ∈ gαi is another unit vector, it follows from Lemma 4.1
that the induced foliation Fη is congruent to Fξ under an isometry in
the centralizer of a in Ko. We denote by Fi a representative of this
congruence class of homogeneous foliations of codimension one on M ,
that is, Fi = Fξ for some unit vector ξ ∈ gαi .

Our next aim is to study the geometry of such a foliation Fi in more
detail. Let αi ∈ Λ be a simple root and ξ ∈ gαi be a unit vector such
that Fi = Fξ. We put Hi = Hαi/|Hαi | = Hαi/|αi|. The vectors ξ
and Hi span a two-dimensional subalgebra of a + n with Lie bracket
[Hi, ξ] = αi(Hi)ξ = |αi|ξ. A straightforward calculation shows that the
covariant derivatives of these left-invariant vector fields are given by
∇ξξ = |αi|Hi, ∇ξHi = −|αi|ξ, ∇HiHi = 0 and ∇Hiξ = 0. Thus ξ and
Hi, now considered as left-invariant vector fields, span an autoparallel
subbundle of the tangent bundle of AN , and it follows that the orbit
of the corresponding connected subgroup of AN through o is a totally
geodesic real hyperbolic plane RH2 ⊂ AN = M . Let γ : R → M be the
geodesic in M with γ(0) = o and γ̇(0) = ξ. Clearly, this geodesic lies in
the totally geodesic RH2. Using again the Koszul formula for the Levi
Civita connection of AN it is easy to see that the tangent vector field
γ̇ of γ satisfies γ̇(t) = 1

cosh(|αi|t)ξγ(t) − tanh(|αi|t)(Hi)γ(t) for all t ∈ R,
where we view ξ and Hi as left-invariant vector fields on AN .

Let t ∈ R, g = γ(t) ∈ AN , and denote by Ig−1 the conjugation on Go

by g−1. Clearly, Ig−1 leaves AN invariant, and hence Ig−1(Sξ) is also a
subgroup of AN . Since Ig−1(Sξ) ·o = g−1Sξg ·o = γ(t)−1Sξ ·γ(t), we see
that the orbit of the action of Ig−1(Sξ) through o is the left translate from
γ(t) to o of the orbit of the action of Sξ through γ(t). Since γ̇(t) is a unit
normal vector of Sξ ·γ(t) at γ(t), and left translation Lg−1 with g−1 is an
isometry, the vector ξt = Lg−1∗γ̇(t) = 1

cosh(|αi|t)ξo − tanh(|αi|t)(Hi)o is a
unit normal vector of Ig−1(Sξ) · o at o. It follows that Ad(g−1)sξ = sξt ,
or equivalently, Ad(g)sξt = sξ, where sξt is the subalgebra of a+n given
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by sξt = (a + n) � Rξt. Thus we have proved:

Lemma 4.2. Let Fi = Fξ with some unit vector ξ ∈ gαi. Then the
leaf of Fi at oriented distance t ∈ R in direction of ξ is isometrically
congruent the orbit Sξt · o, where

ξt =
1

cosh(|αi|t)ξ −
1

|αi| tanh(|αi|t)Hαi

and Sξt is the connected Lie subgroup of AN with Lie algebra (a + n) �
Rξt.

This lemma is very useful for studying the geometry of the leaves
of Fi. Let Aξt be the shape operator with respect to ξt of the or-
bit Sξt · o at o. By means of the Weingarten formula for the shape
operator and the Koszul formula for the Levi Civita connection of
AN we have 2〈AξtX,Y 〉 = 2〈∇XY, ξt〉 = 〈[X,Y ], ξt〉 − 〈[Y, ξt], X〉 +
〈[ξt, X], Y 〉. Since sξt is a subalgebra of a + n, we have [X,Y ] ∈ sξt and
hence 〈[X,Y ], ξt〉 = 0 for all X,Y ∈ sξt . Moreover, since the adjoint
transformation ad(ξt)∗ of ad(ξt) satisfies ad(ξt)∗ = −ad(θξt), we have
〈[Y, ξt], X〉 = −〈ad(ξt)Y,X〉 = −〈ad(ξt)∗X,Y 〉 = 〈ad(θξt)X,Y 〉. Alto-
gether we now easily get 〈AξtX,Y 〉 = 1

2(〈ad(ξt)X,Y 〉+ 〈X, ad(ξt)Y 〉) =
1
2〈(ad(ξt)− ad(θξt))X,Y 〉 for all X,Y ∈ sξt = To(Sξt · o). Thus we have
proved:

Lemma 4.3. Let Fi = Fξ with some unit vector ξ ∈ gαi. The shape
operator Aξt with respect to ξt of the orbit Sξt · o at o is given by

AξtX =
[

1
2 cosh(|αi|t)(ξ − θξ) − 1

|αi| tanh(|αi|t)Hαi , X

]
sξt

for all X ∈ sξt, where the subscript sξt denotes the orthogonal projection
onto sξt.

We will now investigate the principal curvatures of the leaves of the
foliation Fi. Let Fi = Fξ with some unit vector ξ ∈ gαi . We identify the
leaf of Fi at distance t in direction ξ with Sξt · o.

Proposition 4.4. Let Fi = Fξ with some unit vector ξ ∈ gαi. For
the principal curvatures of Sξt · o we have:

(1) The (r−1)-dimensional subspace a�RHαi is invariant under Aξt

and the corresponding principal curvature is 0.
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(2) The subspace (gαi � Rξ) ⊕ g2αi is invariant under Aξt and the
corresponding principal curvatures are −|αi| tanh(|αi|t) with mul-
tiplicity dim gαi − dim g2αi − 1 and

−3
2
|αi| tanh(|αi|t) ± 1

2
|αi|

√
2 − tanh2(|αi|t)

with multiplicity dim g2αi.

(3) The one-dimensional subspace (RHαi ⊕Rξ)�Rξt is invariant un-
der Aξt with corresponding principal curvature −|αi| tanh(|αi|t).

(4) Define k in the normalizer NK(a) of a in K by

k = Exp
(

π√
2|αi|

(ξ + θξ)
)
.

The subspace n�(gαi⊕g2αi) is invariant under Aξt and Ad(k) and
we have AξtAd(k)X = −Ad(k)AξtX for all X ∈ n � (gαi ⊕ g2αi).
In particular, if AξtX = cX, then AξtAd(k)X = −cAd(k)X.

Proof.
(1): For all H ∈ a � RHαi we have [ξ,H] = −αi(H)ξ = 0, [θξ,H] ∈

g−αi and [Hαi , H] = 0, which implies AξtH = 0 by means of Lemma 4.3.

(2): We have 〈[θξ,X], H〉 = 〈X, [H, ξ]〉 = αi(H)〈X, ξ〉 = 0 for all
X ∈ gαi � Rξ and H ∈ a. Since obviously [θξ,X] ∈ g0, this implies
[θξ, gαi � Rξ]sξt

= 0, and shows that (gαi � Rξ) ⊕ g2αi is invariant
under Aξt . The vector space gαi � Rξ can be decomposed orthogo-
nally into gαi � Rξ = V1 ⊕ V2, where V1 is the kernel of the linear
map ad(ξ)|gαi : gαi → g2αi and V2 is the image of the linear map
ad(θξ)|g2αi : g2αi → gαi . One can easily see that V1 consists of prin-
cipal curvature vectors with principal curvature −|αi| tanh(|αi|t) and
corresponding multiplicity dim gαi − dim g2αi − 1. Note that ad(ξ)|V2 :
V2 → g2αi is an isomorphism because of [ξ, [θξ, Y ]] = −[Y, [ξ, θξ]] =
[Y,Hαi ] = −2|αi|2Y for all Y ∈ g2αi . Moreover, if Y ∈ g2αi is a unit
vector, then X := 1√

2|αi| [θξ, Y ] ∈ gαi is also a unit vector. It follows eas-
ily from Lemma 4.3 that the two-dimensional linear subspace RX⊕RY
of (gαi �Rξ)⊕ g2αi is invariant under Aξt and has the matrix represen-
tation −|αi| tanh(|αi|t) − |αi|√

2 cosh(|αi|t)
− |αi|√

2 cosh(|αi|t) −2|αi| tanh(|αi|t)
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with respect to X and Y . From this one can calculate the eigenvalues
directly.

(3): The subspace (RHαi⊕Rξ)�Rξt is of dimension one. Since ξ and
1

|αi|Hαi are orthonormal, the vector X := tanh(|αi|t)ξ+ 1
|αi| cosh(|αi|t)Hαi

belongs to this subspace. A direct calculation using Lemma 4.3 shows
that AξtX = −|αi| tanh(|αi|t)X.

(4): The subspace RHαi ⊕ Rξ ⊕ Rθξ is a subalgebra of g isomor-
phic to sl(2,R). The isometry k = Exp

(
π√
2|αi|(ξ + θξ)

)
is in NK(a)

and satisfies Ad(k)(Hαi) = −Hαi and Ad(k)(ξ − θξ) = θξ − ξ. The
significance of k is that Ad(k)|a is the reflection in the hyperplane
a�RHαi . It is clear that Ad(k) preserves n� (gαi ⊕g2αi), and from (1),
(2) and (3) it follows that Aξt preserves this subspace as well. More-
over, from the explicit expression of Aξt in Lemma 4.3 we easily see that
Ad(k) ◦Aξt = −Ad(k) ◦Aξt holds on n � (gαi ⊕ g2αi). q.e.d.

This proposition shows that the sum of the principal curvatures
on n � (gαi ⊕ g2αi) is zero. This makes it easy to calculate the mean
curvature of each leaf of the foliation Fi. The following corollary is a
direct consequence of Proposition 4.4:

Corollary 4.5. The (constant) mean curvature µt of the leaf of Fi

at distance t in direction ξ satisfies

µt = −|αi| tanh(|αi|t)
n− 1

(dim gαi + 2 dim g2αi).

Therefore the leaf of Fi through o, i.e., the orbit Sξ ·o, is the only minimal
leaf of Fi. This minimal leaf is an austere submanifold, i.e., if c is a
principal curvature then also −c is a principal curvature with the same
multiplicity.

Each foliation Fi has a kind of reflective symmetry. Let Fi = Fξ

with a unit vector ξ ∈ gαi . Consider the gradation g =
⊕m

k=−m gk of
g and the subalgebra h =

⊕
k even gk of g. Let H be the connected Lie

subgroup of G with Lie algebra h. Since h is invariant under the Cartan
involution θ, the orbit Q = H · o is a totally geodesic submanifold of
M . The subspace νoQ =

⊕
k odd pk ⊂ p with pk = (gk ⊕ g−k) ∩ p is

the normal space of Q at o. It is easy to see that νoQ is a Lie triple
system in p, which implies that for each normal space of Q there exists
a totally geodesic submanifold of M that is tangent to that normal
space. This implies that the reflection ΦQ of M in Q is an isometry. By
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construction, Ad(ΦQ)X = X if X ∈ ⊕
k even gk, and Ad(ΦQ)X = −X

if X ∈ ⊕
k odd gk. Thus sξ is invariant under Ad(ΦQ) and it follows

that ΦQ maps Sξ · o onto itself. Since Ad(ΦQ)ξ = −ξ, we then conclude
that ΦQ interchanges the two orbits at any positive distance to the
minimal orbit. It is worthwhile to point out that the submanifold Q is
independent of the choice of the simple root αi and the choice of the
unit vector ξ ∈ gαi . We thus have proved:

Proposition 4.6. There exists a totally geodesic submanifold Q of
M such that the reflection ΦQ of M in Q is an isometry that leaves the
minimal leaf of Fi invariant and interchanges the two leaves in Fi at
any given positive distance to the minimal leaf.

Next we shall compare the principal curvatures of the leaves of Fi

and Fj . As Corollary 4.5 shows, the mean curvature of the leaves of
Fi depends only on the length of the root αi and the distance t to the
unique minimal leaf of Fi. This is also true for the principal curvatures,
as the following result shows:

Theorem 4.7. If αi, αj ∈ Λ with |αi| = |αj |, then the foliations Fi

and Fj have the same principal curvatures, counted with multiplicities.
More precisely, let ξ ∈ gαi and η ∈ gαj be unit vectors. The geodesic
γξ : R → M with γξ(0) = o and γ̇ξ(0) = ξ intersects each leaf of Fξ and
γ̇ξ(t) is a unit normal vector of the leaf Fξ(t) of Fξ through γξ(t), which
by homogeneity of the leaves naturally extends to a unit normal vector
field ξ(t) on the leaf Fξ(t) (and analogously for η). Then the principal
curvatures, counted with multiplicities, of Fξ(t) with respect to ξ(t) and
of Fη(t) with respect to η(t) coincide.

Proof. Let ξ ∈ gαi and η ∈ gαj be unit vectors. We have to show
that for each t ∈ R the orbits Sξt · o and Sηt · o have the same principal
curvatures, counted with multiplicities. Since αi and αj have the same
length there exists an isometry k ∈ NK(a) for which the induced action
Ad(k)∗ of Ad(k) on Σ maps αi to αj , and hence Ad(k)ξ ∈ gαj . If
dim gαj > 1, we can assume Ad(k)ξ = η by Exercise 2 on p. 211 in
[11]. If dim gαj = 1, we can assume Ad(k)ξ = η by Proposition 4.6.
Note that, by construction, Ad(k)Hαi = Hαj and Ad(k)ξt = ηt. The
map Ad(k) induces a linear isometry from (a ⊕ gαi ⊕ g2αi) � Rξt onto
(a ⊕ gαj ⊕ g2αj ) � Rηt, and using Lemma 4.3 it is easy to see that
Ad(k) ◦ Aξt = Aηt ◦ Ad(k) holds on this subspace. Let λ ∈ Σ+ so that
λ − αi /∈ Σ+, and let Vλ,αi

be the linear subspace of n spanned by the
root spaces of the roots in the αi-string of λ. It follows from Lemma 4.3
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that Vλ,αi
is invariant under Aξt . If Ad(k)∗λ ∈ Σ+, then, using again

Lemma 4.3, it follows that Ad(k) ◦ Aξt = Aηt ◦ Ad(k) holds on Vλ,αi
.

If Ad(k)∗λ ∈ Σ− = Σ \ Σ+, we define k′ = Exp
(

π√
2|αj |(η + θη)

)
(see

Proposition 4.4 (4)) and a linear isometry F from Vλ,αi
into n by F =

Ad(k′) ◦ θ ◦Ad(k)|Vλ,αi
. Then, by construction, F (Hαi) = Hαj , F (ξ) =

η, F (θξ) = θη, and hence also F (ξt) = ηt. A straightforward calculation
shows that F ◦ Aξt = Aηt ◦ F holds on Vλ,αi

. Since n � (gαi ⊕ g2αi) is
spanned by subspaces of the form Vλ,αi

this finishes the proof. q.e.d.

We will now investigate the congruence problem for the foliations Fi.
First, let α, β ∈ Λ be two distinct simple roots and ξ ∈ gα, η ∈ gβ be
two unit vectors. Assume that Fξ and Fη are isometrically congruent.
It is clear that an isometry mapping Fξ to Fη maps the unique minimal
leaf Sξ ·o of Fξ to the unique minimal leaf Sη ·o of Fη. Thus there exists
an isometry k ∈ K with k(Sξ ·o) = Sη ·o. It is also clear that k preserves
the mean curvature of each leaf as well as the distance of any leaf to the
minimal leaf. Therefore, using the explicit expression in Corollary 4.5
of the mean curvature of the leaves, we necessarily have |α| = |β|. We
conclude that if α and β are simple roots with different length, then the
foliations Fξ and Fη cannot be isometrically congruent.

We now assume that α and β have the same length and that Sξ ·o and
Sη · o are congruent under an isometry of M . Our next aim is to prove
that there exists a symmetry of the Dynkin diagram of the restricted
root system of M mapping α to β. First of all, a similar proof as in
Lemma 3.3 shows that Sξ is completely solvable, that is, Ad(Sξ) can be
represented by upper triangular matrices in a suitable basis of the Lie
algebra sξ. By assumption, Sξ · o and Sη · o are isometric to each other.
Since any two completely solvable transitive groups of isometries on a
Riemannian manifold are conjugate to each other in the full isometry
group of that manifold (see, e.g., [1]), we conclude that the Lie algebras
sξ and sη are isomorphic.

Let F : sξ → sη be a Lie algebra isomorphism. It is easy to see
that a is a Cartan subalgebra of both sξ and sη. Since any two Cartan
subalgebras of a solvable Lie algebra are conjugate to each other under
an inner automorphism we can assume without loss of generality that
F (a) = a. If dim gα > 1, then Σ+ is the set of roots of sξ with respect
to a, and if dim gα = 1, then Σ+ \ {α} is the set of roots of sξ with
respect to a. It follows that if dim gα > 1, then also dim gβ > 1, and
if dim gα = 1, then also dim gβ = 1. We will now distinguish the two
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cases when dim gα > 1 and dim gα = 1.

Case 1. dim gα > 1. Then we get [F (H), F (Xλ)] = F ([H,Xλ]) =
λ(H)F (Xλ) for all H ∈ a and Xλ ∈ gλ ∩ sξ, λ ∈ Σ+. Note that
gλ ∩ sξ = gλ for all λ ∈ Σ+ \ {α} and gα ∩ sξ = gα � Rξ. Thus, for all
λ ∈ Σ+ \ {α}, F maps the root space gλ onto the root space gF ∗(λ) ∩ sη

with F ∗(λ) = λ ◦ F−1|a. Moreover, F maps gα � Rξ onto gF ∗(α) ∩ sη,
and consequently F ∗ induces a permutation of the roots in Σ+. Let
λ, µ ∈ Λ be simple roots and let λ, . . . , λ+qµ be the µ-string containing
λ. Since F ∗ : Σ+ → Σ+ is a bijection, and as F ∗(λ+µ) = F ∗(λ)+F ∗(µ),
the roots F ∗(λ), . . . , F ∗(λ) + qF ∗(µ) form the F ∗(µ)-string containing
F ∗(λ). It follows that F ∗ preserves the edge and arrow relations between
the vertices in the Dynkin diagram of Σ, that is, F ∗ is a symmetry of the
Dynkin diagram of Σ. In particular, F ∗ maps simple roots to simple
roots, that is, F ∗(Λ) = Λ. Taking into account the multiplicities of
simple roots it now follows easily that F (gα�Rξ) = gβ �Rη, and hence
F ∗(α) = β. We thus have proved that if dim gα > 1, and if Sξ · o is
isometric to Sη · o, then there exists a symmetry of the Dynkin diagram
of the restricted root system Σ mapping the simple root α to the simple
root β.

Case 2. dim gα = 1. Recall that in this case the set of roots of sξ

and sη with respect to the Cartan subalgebra a is Σ+\{α} and Σ+\{β},
respectively. As in the previous case we can construct a bijection F ∗ of
Σ+ \ {α} onto Σ+ \ {β} preserving the string relations between roots.
Our aim now is to show that there exists a symmetry of the Dynkin
diagram of Σ mapping α to β.

We can assume that 2α /∈ Σ+, because α is a simple root and if
2α ∈ Σ+ we have Σ = BCr, but if Λ ⊂ BCr there exists only one
simple root α ∈ Λ with 2α ∈ Σ+ and the length of it is different from
the length of all other simple roots in Λ.

We now define Λα = {γ + qα | γ ∈ Λ \ {α} , γ + qα ∈ Σ+ , q ∈
{0, 1, 2, 3}}. First of all, from the structure of n as a graded Lie algebra
n1⊕· · ·⊕nm with n1 = gα1 ⊕· · ·⊕ gαr it is clear that n� gα is a graded
Lie algebra generated by Gen(n � gα) =

⊕
γ∈Λα

gγ . Moreover, if we
denote by mα the coefficient of α in the maximal root α̃ in Σ+, we see
that n � gα is an (m−mα)-step nilpotent Lie algebra.

We will now associate to each such subalgebra n � gα a diagram in
the following manner. Each vertex v ∈ Λα with 2v /∈ Σ+ is represented
by ��������, and each vertex v ∈ Λα with 2v ∈ Σ+ is represented by ��������	
�����. Then
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connect two vertices with each other if one of the following cases occurs:

�������� ��������

v1 v2
if v1 + v2 ∈ Σ+, 2v1 + v2, v1 + 2v2 /∈ Σ+;

�������� ��������

v1 v2

�� if v1 + v2, v1 + 2v2 ∈ Σ+, 2v1 + v2, v1 + 3v2 /∈ Σ+;

�������� ��������

v1 v2

��� if v1 + v2, v1 + 2v2, v1 + 3v2 ∈ Σ+, 2v1 + v2 /∈ Σ+;

�������� ��������	
�����

v1 v2

�� �� if v1 + v2 ∈ Σ+;

��������	
����� ��������	
�����

v1 v2
if v1 + v2 ∈ Σ+.

In the case �������� ��������	
������� �� we have 2v1+v2, v1+2v2 ∈ Σ+ and 3v1+v2, v1+3v2 /∈
Σ+, which explains the two lines and the two arrows. In the case ��������	
����� ��������	
�����

we have v1 + 2v2, 2v1 + v2 /∈ Σ+, which explains that there is only one
line. It follows from general properties of root systems that v1+v2 /∈ Σ+

if none of the above cases occurs. For i ≤ j we define

�������� ��������

vi vj
=


��������
vi

if i = j
�������� ��������

vi vi+1
, . . . ,

�������� ��������

vj−1 vj
if i < j.

Since F maps the Cartan subalgebra a of sξ onto the Cartan sub-
algebra a of sη, it induces a transformation from Λα onto Λβ such that
the string relations among the elements in Λα are the same as the string
relations among the corresponding elements in Λβ. It follows that the
diagrams of n�gα and n�gβ are isomorphic. Thus the diagrams provide
us with a simple tool for deciding nonisomorphy of two Lie algebras sξ

and sη.
By taking into account the following two observations we can re-

duce the number of diagrams that have to be drawn. Firstly, we must
have dim Gen(n � gα) = dim Gen(n � gβ). It is quite easy to determine
dim Gen(n�gα) from the Dynkin diagram. First determine the number
all vertices that are not connected with α. For each other vertex add
the number two if it is connected with α by one line or by more lines
with the arrow pointing away from α, and add the number three or four
if it is connected with α by two or three lines with the arrow pointing
towards α. Secondly, the number of steps of n� gα and n� gβ must be
equal, that is, mα = mβ. Taking into account these two simple criteria
and the symmetries of the Dynkin diagram we are left with the following
cases:

1. Σ = Ar, r ≥ 5 and α, β ∈ {α2, . . . , αs} with s =
[

r+1
2

]
;
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2. Σ = Br, r ≥ 4 and α, β ∈ {α2, . . . , αr−1};

3. Σ = Cr, r ≥ 5 and α, β ∈ {α2, . . . , αr−2};

4. Σ = Dr, r ≥ 5 and α, β ∈ {α1, αr}, and r ≥ 6 and α, β ∈
{α2, . . . , αr−3};

5. Σ = E7 and α, β ∈ {α1, α2} or α, β ∈ {α3, α5};

6. Σ = E8 and α, β ∈ {α1, α8} or α, β ∈ {α3, α6};

7. Σ = BCr, r ≥ 4 and α, β ∈ {α1, . . . , αr−2}.

It is a straightforward but lengthy exercise to draw all the relevant
diagrams. We omit the list of all diagrams here and just illustrate it by
discussing Case 3:

a) n � gα2 :

�������� ��������

��������

�������� ��������

�������� ��������

α1

α2 + α3

α4α1 + α2
α3

αr−1 αr.
������

������ ��

b) n � gαi , 3 ≤ i ≤ r − 3 , r ≥ 6:

�������� ��������

�������� ��������

��������

�������� ��������

�������� ��������

α1 αi−2

αi−1 + αi αi+1

αi+2

αi−1 αi + αi+1

αr−1 αr.

������ ������

������ ������

��

c) n � gαr−2 :

�������� ��������

�������� ��������

��������

�������� ��������α1 αr−4

αr−3 + αr−2 αr−1

αr.

αr−3 αr−2 + αr−1

������
��

���
���

���
���

������
��

������
������

By comparing these diagrams it is now easy to conclude that there
exists a symmetry P ∈ Aut(DD) with P (α) = β. The other cases can
be settled in a similar fashion.

Conversely, let α, β ∈ Λ and ξ ∈ gα and η ∈ gβ be unit vectors.
Assume that there exists a symmetry P ∈ Aut(DD) with P (α) = β.
Then there exists an isometry k in the normalizer of a + n in K such
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that the induced action of F = Ad(k) ∈ Aut(g) on Σ+ is equal to the
action of P on Σ+. Then F (sξ) = sη′ for some unit vector η′ ∈ gβ.
Using Lemma 4.1 we see that the foliations Fξ and Fη are isometrically
congruent. Thus we have proved:

Theorem 4.8. Two foliations Fi and Fj are isometrically congru-
ent to each other if and only if there exists a symmetry P ∈ Aut(DD)
with P (αi) = αj.

This result has a remarkable consequence. A smooth function f :
M → R is isoparametric if there exist smooth real-valued functions
a, b such that ||grad f ||2 = (a ◦ f)f and ∆f = (b ◦ f)f . The interest in
such functions stems from geometrical optics. The first condition means
that the level sets of f are equidistant, and then the second condition
is equivalent to the constancy of the mean curvature of the level sets.
The level sets of an isoparametric function form an isoparametric sys-
tem on M . Clearly, the level sets of a cohomogeneity one action form an
isoparametric system, where the corresponding isoparametric function
is just the natural projection onto the orbit space. Such isoparamet-
ric systems are called homogeneous. From Theorems 4.7 and 4.8 we
conclude:

Corollary 4.9. On every connected irreducible Riemannian sym-
metric space of noncompact type and rank ≥ 3 there exist homogeneous
isoparametric systems with the same principal curvatures, counted with
multiplicities.

Ferus, Karcher and Münzner [9] discovered such a phenomenon for
inhomogeneous isoparametric systems on spheres, but apparently it was
not clear whether homogeneous isoparametric systems can be distin-
guished in general by their “spectral data”. We illustrate the corollary
by an example.

Example. Let M be the set of all Euclidean structures on R
4.

Then M can be realized as the 9-dimensional noncompact symmetric
space SL(4,R)/SO(4) of rank three. We get an Iwasawa decomposition
of SL(4,R) by choosing for A the diagonal (4 × 4)-matrices with deter-
minant one, and for N the upper triangular (4 × 4)-matrices for which
each element on the diagonal is equal to one. Then

M = AN =



x11 x12 x13 x14
0 x22 x23 x24
0 0 x33 x34
0 0 0 x44

 ∣∣∣xij ∈ R , x11x22x33x44 = 1

 .
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The Lie algebra a of A is the 3-dimensional abelian Lie algebra of all
diagonal (4 × 4)-matrices with real coefficients and trace zero, and the
Lie algebra n of N is the 6-dimensional 3-step nilpotent Lie algebra of
all upper triangular (4 × 4)-matrices with real coefficients. We define
three vectors H1, H2, H3 ∈ a by

H1=


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

, H2=


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

, H3=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

,

and denote by α1, α2, α3 the dual one-forms on a with respect to the
Killing form of sl(4,R). Then Σ+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 +
α2 + α3} is the set of positive restricted roots of sl(4,R) with respect
to a and Λ = {α1, α2, α3} is the corresponding set of simple roots.
The resulting restricted root system is A3 and its Dynkin diagram is
�������� �������� ��������
α1 α2 α3

. The simple root spaces gα1 , gα2 , gα3 are spanned by


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

respectively. We define three subgroups S1, S2, S3 of AN by

S1 =



x11 0 x13 x14
0 x22 x23 x24
0 0 x33 x34
0 0 0 x44


∣∣∣∣∣ xij ∈ R , x11x22x33x44 = 1

 ,

S2 =



x11 x12 x13 x14
0 x22 0 x24
0 0 x33 x34
0 0 0 x44


∣∣∣∣∣ xij ∈ R , x11x22x33x44 = 1

 ,

S3 =



x11 x12 x13 x14
0 x22 x23 x24
0 0 x33 0
0 0 0 x44


∣∣∣∣∣ xij ∈ R , x11x22x33x44 = 1

 .

The corresponding subalgebras of a + n are si = (a + n) � gαi . Since
the Dynkin diagram has only one nontrivial symmetry, we see that
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the homogeneous isoparametric systems induced by the actions of S1
and S3 are congruent under an isometry of M . On the other hand, the
homogeneous isoparametric systems induced by the actions of S1 and S2
are not congruent under an isometry of M , but have the same principal
curvatures, counted with multiplicities.

5. The classification

By means of Theorems 3.5 and 4.8 we have solved the congruency
problem on the parameter space RP r−1∪{1, . . . , r}. It remains to show
that any homogeneous cohomogeneity one foliation on M is isometri-
cally congruent to a foliation constructed from the parameter space.

Let M be a connected irreducible Riemannian symmetric space of
noncompact type and F a homogeneous foliation of codimension one on
M . This means that there exists a connected subgroup S of Go such
that the leaves of F coincide with the orbits of the action of S on M .
Let S = L · R be a Levi decomposition of S, where L and R are the
semisimple and solvable factor. Moreover, let L = LK · LAN be an
Iwasawa decomposition of L, where LK and LAN are the compact and
solvable factor. Then S = L · R = LK · (LAN · R). The compact group
LK has a fixed point o in M by Cartan’s fixed point theorem. It follows
that the solvable subgroup LAN · R of S is transitive on S · o, the leaf
of F through o, and consequently also on every leaf of F. Without loss
of generality we can therefore assume that S is solvable.

Since S is solvable, we can decompose it into S = T · B with a
compact subgroup T and a normal k-solvable subgroup B (see e.g.,
[19]). The latter means that there exists a compact normal subgroup
BK of B such that B/BK is simply connected. The subgroup BK is
then maximal compact in B and contained in the center of B. An
analogous argument as above shows that already B is transitive on each
leaf of F. Since B is a subgroup of the isometry group of M , it acts
effectively on M . Since the leaves of F are of codimension one, B must
also act effectively on each leaf of F. The isotropy subgroup of B at a
point in M is compact and hence contained in some conjugate of BK ,
and therefore lies in the center of B. Because of effectivity of B it
follows that at every point the isotropy subgroup of B is trivial. Thus
B acts simply transitively on each orbit. Without loss of generality we
can therefore assume from now on that S is solvable and acts simply
transitively on each orbit of F. This shows that the classification up to
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isometric congruence of all homogeneous foliations of codimension one
on M is equivalent to the classification up to orbit equivalence of all
(n−1)-dimensional connected solvable subgroups of Go acting freely on
M .

Since the Lie algebra s of S is solvable, there exists a maximal solv-
able subalgebra of g containing s. The maximal solvable subalgebras of
real semisimple Lie algebras have been classified by Mostow [21]. Any
maximal solvable subalgebra of g contains a Cartan subalgebra h of g.
The Cartan subalgebra h is the direct sum of its toroidal part t and its
vector part a. Here, the toroidal part t consists of all X ∈ h for which the
eigenvalues of ad(X) are purely imaginary, and the vector part a consists
of all X ∈ h for which the eigenvalues of ad(X) are real. There exists a
Cartan decomposition g = k + p of g such that t ⊂ k and a ⊂ p. Since
a is abelian it induces a root space decomposition g = g0 ⊕

⊕
λ∈Σ gλ

of g, where Σ denotes the set of roots in the dual vector space a∗. An
element H ∈ a is called regular if α(H) �= 0 for all λ ∈ Σ. The set of all
regular elements in a forms an open and dense subset of a. We choose
a regular element H ∈ a and define Σ+ = {λ ∈ Σ | λ(H) > 0} and
n =

⊕
λ∈Σ+ gλ. Then h + n is a maximal solvable subalgebra of g. Con-

versely, as was shown by Mostow [21], any maximal solvable subalgebra
of the real semisimple Lie algebra g arises in this way.

Now let h + n be a maximal solvable subalgebra of g that contains
s. Note that for a Cartan subalgebra h the vector part a is in general
not a maximal abelian subspace of p. If a is maximal abelian, then h

is called a maximally noncompact Cartan subalgebra. In this case Σ is
a root system and the above decomposition of g is the restricted root
space decomposition of g.

Lemma 5.1. If h + n is a maximal solvable subalgebra of g with
s ⊂ h + n, then h is a maximally noncompact Cartan subalgebra of g.

Proof. Let HN and AN be the connected subgroup of Go with
Lie algebra h + n and a + n, respectively. The orbits of the actions of
HN and AN on M coincide. Therefore, in order that S has orbits of
codimension one, we necessarily need that the dimension of a + n is
at least n − 1. Assume that h is not maximally noncompact. Then
the vector part a of h is strictly contained in some maximal abelian
subspace ã in p. Let g = g̃0 ⊕

⊕
λ̃∈Σ̃ g̃

λ̃
be the restricted root space

decomposition of g with respect to ã, where Σ̃ is the corresponding set
of restricted roots. By construction, the restriction to a of any root in
Σ̃ is either trivial or a root in Σ. This implies g0 = g̃0 ⊕

⊕
λ̃∈Σ̃,λ̃|a=0 g̃

λ̃
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and gλ =
⊕

λ̃∈Σ̃,λ̃|a=λ
g̃

λ̃
for all λ ∈ Σ. We choose a set of simple

roots in Σ̃ such that λ̃(H) ≥ 0 for any such simple root λ̃, and define
ñ =

⊕
λ̃∈Σ̃+ g̃

λ̃
where Σ̃+ denotes the resulting set of positive restricted

roots in Σ̃. Clearly, we have n ⊂ ñ. Since a is strictly contained in ã,
the inequality dim(a+n) ≥ n−1 and the equality dim(ã + ñ) = n imply
that n = ñ and dim a = dim ã − 1. According to Sugiura [24, Theorem
5], the one-dimensional normal space of a in ã is contained in a wall of
a Weyl chamber in ã. But this implies that there exists a root in Σ̃+

whose restriction to a is trivial, which contradicts the equality n = ñ.
Thus h is a maximally noncompact Cartan subalgebra of g. q.e.d.

A maximally noncompact Cartan subalgebra h of a real semisimple
Lie algebra g is of the form h = t + a, where a is a maximal abelian
subspace in the vector part p of some Cartan decomposition g = k + p

and t is a maximal abelian subalgebra in the centralizer of a in k. Any
two maximally noncompact Cartan subalgebras of a real semisimple Lie
algebra are conjugate to each other. Thus we have proved:

Proposition 5.2. Let S be a connected solvable closed subgroup of
Go that acts freely on M with codimension one orbits. Then there exists
a Cartan decomposition g = k + p, a restricted root space decomposition
g = g0⊕

⊕
λ∈Σ gλ with respect to a maximal abelian subspace a in p, and

a set Λ of simple roots in Σ, such that the Lie algebra s of S satisfies
s ⊂ t + a + n, where t is a maximal abelian subalgebra in the centralizer
m of a in k and n =

⊕
λ∈Σ+ gλ, where Σ+ denotes the set of positive

restricted roots determined by Λ. In this situation h = t + a is a Cartan
subalgebra and h + n is a maximal solvable subalgebra of g.

We may assume from now on that s is contained in a maximal solv-
able subalgebra of the form t + a + n as described in Proposition 5.2.
We denote by sc the image of s under the canonical projection from
t + a + n onto the compact part t. Analogously, sn denotes the image
of s under the canonical projection from t + a + n onto the noncompact
part a + n. Since dim s = n − 1 and since S acts freely on M we also
have dim sn = n−1. Thus there exists a unit vector ξ ∈ a+n such that
sn = (a + n) � Rξ is the orthogonal complement of Rξ in a + n.

Lemma 5.3. We have ξ ∈ a, or there exists a simple root α ∈ Λ
such that ξ ∈ RHα + gα.

Proof. We decompose ξ into ξ = ξ0 +
∑

λ∈Σ+ ξλ with ξ0 ∈ a and
ξλ ∈ gλ. We have to show that if ξλ �= 0 for some λ ∈ Σ+, then λ ∈ Λ,
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ξ0 ∈ RHλ, and ξµ = 0 for all µ ∈ Σ+ \ {λ}. Assume that ξλ �= 0 for
some λ ∈ Σ+. Without loss of generality we can assume that λ is not
the sum of two roots in {µ ∈ Σ+ | ξµ �= 0}.

We first show that λ ∈ Λ. Assume that λ /∈ Λ. Consider the natural
gradation n = n1 ⊕ · · · ⊕ nm of n generated by n1 =

⊕
µ∈Λ gµ. Since

λ /∈ Λ, there exist vectors Xµ ∈ gµ and Yν ∈ gγ , where µ, ν ∈ Σ+ with
µ + ν = λ, such that ξλ =

⊕
µ,ν∈Σ+,µ+ν=λ[Xµ, Yν ]. The assumption

that λ is not the sum of two roots in {µ ∈ Σ+ | ξµ �= 0} ensures that
these vectors Xµ and Yν are in sn. Thus there exist vectors Sµ, Tν ∈
t such that Sµ + Xµ and Tν + Yν are in s. Therefore we also have
[Sµ, Yν ] − [Tν , Xµ] + [Xµ, Yν ] = [Sµ + Xµ, Tν + Yν ] ∈ s. But since the
derived subalgebra of t + a + n is contained in n, we must have [s, s] ⊂ n

and hence [Sµ, Yν ] − [Tν , Xµ] + [Xµ, Yν ] = [Sµ + Xµ, Tν + Yν ] ∈ sn. As
t is contained in m, the centralizer of a in k, each element in t leaves
each root space invariant. Thus [Sµ, Yν ] ∈ gν ⊂ sn and [Tν , Xµ] ∈
gµ ⊂ sn. Altogether this implies that ξλ =

⊕
µ,ν∈Σ+,µ+ν=λ[Xµ, Yν ] =⊕

µ,ν∈Σ+,µ+ν=λ([Sµ + Xµ, Tν + Yν ] − [Sµ, Yν ] + [Tν , Xµ]) ∈ sn, which is
a contradiction to ξλ �= 0. Thus we conclude that λ ∈ Λ.

We next show that ξ0 ∈ RHλ. Assume that ξ0 /∈ RHλ. Then
there exists a vector H ∈ a that is perpendicular to ξ0 and satisfies
λ(H) �= 0. Since H is perpendicular to ξ0, we have H ∈ sn, and hence
there exists a vector S ∈ t such that S + H ∈ s. The vector ξ0 + xξλ

with x = −|ξ0|2/|ξλ|2 < 0 is perpendicular to ξ and hence in sn. Thus
there exists a vector T ∈ t such that T + ξ0 + xξλ ∈ s. We conclude
that x[S, ξλ] + xλ(H)ξλ = [S + H,T + ξ0 + xξλ] ∈ sn. Since ad(S) is
a skewsymmetric transformation, we know that [S, ξλ] is perpendicular
to ξλ and hence in sn. Since also x �= 0 and λ(H) �= 0 we conclude that
ξλ ∈ sn, which is a contradiction. It follows that ξ0 ∈ RHλ.

In the next step we show that ξµ = 0 for all µ ∈ Σ+ \ {λ} (if Σ
is a reduced root system) resp. µ ∈ Σ+ \ {λ, 2λ} (if Σ is not reduced).
Assume that there exists such a root µ with ξµ �= 0. Then there exists
a vector H ∈ a with λ(H) = 0 and µ(H) �= 0. Since ξ0 ∈ RHλ and
λ(H) = 0, we see that H is perpendicular to ξ0 and hence in sn. Thus
there exists a vector S ∈ t such that S+H ∈ s. The vector ξλ+yξµ with
y = −|ξλ|2/|ξµ|2 < 0 is perpendicular to ξ and hence in sn. Thus there
exists a vector T ∈ t such that T +ξλ +yξµ ∈ s. Then [S, ξλ]+y[S, ξµ]+
λ(H)ξλ + yµ(H)ξµ = [S + H,T + ξλ + yξµ] ∈ sn. Since [S, ξλ] ∈ gλ is
perpendicular to ξλ and [S, ξµ] ∈ gµ is perpendicular to ξµ, we see that
[S, ξλ] and [S, ξµ] are in sn. Since also λ(H) = 0, y �= 0 and µ(H) �= 0,
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we therefore get ξµ ∈ sn, which is a contradiction. It follows that ξµ = 0
for all µ ∈ Σ+ \ {λ, 2λ}.

If Σ is a reduced root system we have just finished the proof of
Lemma 5.3. Now let us assume that Σ is not reduced. We have to show
that ξ2λ = 0. Assume that ξ2λ �= 0. Then the vectors Hλ + xξλ and
ξλ + zξ2λ with x = −〈Hλ, ξ0〉/|ξλ|2 and z = −|ξλ|2/|ξ22λ| < 0 are in sn.
Hence there exist vectors S, T ∈ t such that S+Hλ+xξλ and T+ξλ+zξ2λ
are in s. Now we get [S, ξλ]+z[S, ξ2λ]+ |Hλ|2ξλ +2z|Hλ|2ξ2λ−x[T, ξλ] =
[S + Hλ + xξλ, T + ξλ + zξ2λ] ∈ sn. Since [S, ξλ], [S, ξ2λ] and [T, ξλ] are
in sn, we get that ξλ +2zξ2λ ∈ sn. But this implies 0 = 〈ξ, ξλ +2zξ2λ〉 =
|ξλ|2 + 2z|ξ2λ|2 = −|ξλ|2, which is a contradiction. Thus we must have
ξ2λ = 0, by which the proof of Lemma 5.3 is finished. q.e.d.

Proposition 5.4. Let s be an (n − 1)-dimensional linear subspace
of h + n with s ∩ t = 0.

(1) sn is a subalgebra of a + n if and only if there exists a unit vector
ξ in a or in RHα + gα for some simple root α ∈ Λ such that
sn = (a + n) � Rξ;

(2) s is a subalgebra of h + n if and only if sn is a subalgebra of a + n

and the linear map L : sn → t defined by LX + X ∈ s for all
X ∈ sn satisfies [LX, Y ]+[X,LY ] ∈ sn and L([LX, Y ]+[X,LY ]+
[X,Y ]) = 0 for all X,Y ∈ sn.

Proof. If sn is a subalgebra of a + n, then it is also a subalgebra
of h + n, and the noncompact part (sn)n of sn is sn itself. It follows
from Lemma 5.3 that there exists a unit vector ξ in a or in RHα + gα

for some simple root α ∈ Λ such that sn = (a + n) � Rξ. Conversely,
since the derived subalgebra of a+n is n, and considering the gradation
n = n1⊕· · ·⊕nm, where n1 =

∑
α∈Λ gα, it is easy to see that (a+n)�Rξ

is a Lie subalgebra of a + n for any such vector ξ. This proves Part (1).
Since s∩ t = 0, it is clear that L : sn → t is a well-defined linear map

and that s = {LX+X | X ∈ sn}. The subspace s is a subalgebra of h+n

if and only if [LX, Y ] + [X,LY ] + [X,Y ] = [LX +X,LY +Y ] ∈ s for all
X,Y ∈ sn. But this is equivalent to saying that for all X,Y ∈ sn there
exists a vector Z ∈ sn such that [LX, Y ] + [X,LY ] + [X,Y ] = LZ + Z.
The vector on the left-hand side of this equation is in n. Thus s is a
subalgebra of h + n if and only if for all X,Y ∈ sn there exists a vector
Z ∈ sn with LZ = 0 such that [LX, Y ] + [X,LY ] + [X,Y ] = Z. If s

is a subalgebra of h + n, then sn is a subalgebra of a + n according to
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Lemma 5.3 and Part (1) of this proposition. Thus, if s is a subalgebra of
h+n then [LX, Y ]+[X,LY ] ∈ sn and L([LX, Y ]+[X,LY ]+[X,Y ]) = 0
for all X,Y ∈ sn. Conversely, if sn is a subalgebra of a + n and if
L satisfies the previous two conditions, the last equivalence statement
implies that s is a subalgebra. q.e.d.

According to Proposition 5.4, sn is a subalgebra of a + n. Let Sn

be the connected subgroup of AN with Lie algebra sn. Every element
in s ∈ S can be written in the form s = tan with t ∈ T , a ∈ A and
n ∈ N , where T,A,N is the connected Lie subgroup of Go with Lie
algebra t, a, n, respectively. Based on Lemma 5.3 we distinguish three
cases, namely
Case 1. ξ ∈ a.
Case 2. ξ ∈ gα for some simple root α ∈ Λ.
Case 3. ξ = aHα + Xα for some 0 �= a ∈ R, 0 �= Xα ∈ gα and some
simple root α ∈ Λ.

Case 1. ξ ∈ a. Then we have sn = (a � Rξ) ⊕ n, where a � Rξ
denotes the orthogonal complement of Rξ in a. Since sc is contained
in the centralizer m of a in k, it is clear that sc leaves each root space
gλ, λ ∈ Σ, invariant. Thus we have [sc, n] ⊂ n. Moreover, sc ⊂ t

and t + a is abelian, which shows that [sc, a � Rξ] = 0. Therefore, if
tan ∈ S, we have at = ta and tn = n′t for some n′ ∈ N . We thus
get tan · o = atn · o = an′t · o = an′ · o ∈ Sn · o, which shows that
S · o ⊂ Sn · o. Since both orbits S · o and Sn · o have the same dimension
and are connected and complete, we conclude S · o = Sn · o. This shows
that the actions of S and Sn are orbit-equivalent, and hence the foliation
F is just the foliation Fξ.

Case 2. ξ ∈ gα for some simple root α ∈ Λ. In this case we have
sn = a ⊕ (n � Rξ) = a ⊕ (gα � Rξ) ⊕ ⊕

λ∈Σ+\{α} gλ. Let λ ∈ Σ+ \
{α} and X ∈ gλ. Using Proposition 5.4 we get 0 = L([LHλ, X] +
[Hλ, LX] + [Hλ, X]) = L({ad(LHλ) + λ(Hλ)Iλ}X), where Iλ denotes
the identity transformation on gλ. But ad(LHλ) is a skewsymmetric
transformation on gλ and λ(Hλ) is nonzero. Thus the transformation
ad(LHλ) +λ(Hλ)Iλ : gλ → gλ is an isomorphism, and we conclude that
Lgλ = 0. Next, for X ∈ gα � Rξ we have [LHα, X] = [LHα, X] +
[Hα, LX] ∈ sn ∩ gα by means of Proposition 5.4, and hence [LHα, X] ∈
gα � Rξ. An analogous argument as above implies L(gα � Rξ) = 0.
Altogether we conclude that L(n � Rξ) = 0. Therefore we have sc =
Lsn = La, and using Proposition 5.4 we get [sc, n�Rξ] = [La, n�Rξ] ⊂
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sn ∩n = n�Rξ. As in Case 1 we can now deduce that S · o = Sn · o and
hence F is equal to Fξ.

Case 3. ξ = aHα + Xα for some 0 �= a ∈ R, 0 �= Xα ∈ gα and some
simple root α ∈ Λ. We put X = Xα/|Xα|, define a subalgebra sX of a+n

by sX = a⊕(n�RX), and denote by SX the corresponding connected Lie
subgroup of AN . As was shown in the proof of Lemma 4.2 there exists
an isometry g ∈ AN with Ad(g)(sn) = sX . The foliations on M that
are induced by the actions of S and Ig(S) are obviously isometrically
congruent. We will now show that the foliations that are induced by
the actions of Ig(S) and SX are equal. Clearly, since g ∈ AN , we have
Ad(g)a ⊂ a + n, Ad(g)n = n and Ad(g)(a + n) = a + n. Furthermore,
Ad(g)(h + n) = Ad(g)h + n is a maximal solvable subalgebra of g and
Ad(g)h = Ad(g)t + Ad(g)a is a Cartan subalgebra of g. We define a
linear map Lg : sX → Ad(g)t by Lg = Ad(g)LAd(g)−1, where L : sn → t

is the linear map defined by LY + Y ∈ s for all Y ∈ sn. It can be easily
verified that Lg satisfies the two conditions in Proposition 5.4. For
the Lie algebra Ad(g)s of Ig(S) we then get Ad(g)s = {Ad(g)(LY +
Y ) | Y ∈ sn} = {LgZ + Z | Z ∈ Ad(g)sn = sX}. This implies that
(Ad(g)s)n = sX , and from Case 2 we conclude that the foliations that
are induced by the actions of Ig(S) and SX are equal. Altogether we
now see that F is isometrically congruent to FX . This concludes Case 3.

Since all Cartan decompositions g = k + p of g, all maximal abelian
subspaces a of p, and all choices of sets Λ of simple roots in the corre-
sponding set Σ of restricted roots are conjugate by inner automorphisms
of g we thus have proved:

Theorem 5.5. Let F be a homogeneous foliation of codimension one
on M . Then F is isometrically congruent to one of the model foliations
F� or Fi.

The main theorem now follows from Theorems 3.5, 4.8 and 5.5.
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